增加注释

pull/14/head
lidapeng 5 years ago
parent c82fff32cc
commit c48f6cd165

@ -6,6 +6,9 @@
* 若有想扩充的功能请进群提意见若是通用场景我会陆续补充技术交流群561433236 * 若有想扩充的功能请进群提意见若是通用场景我会陆续补充技术交流群561433236
## 详细视频教程地址: ## 详细视频教程地址:
* 视频教程地址https://www.bilibili.com/video/av89134035 * 视频教程地址https://www.bilibili.com/video/av89134035
## 测试素材下载
链接:https://pan.baidu.com/s/1Vzwn3iMPBI-FAXBDrCSglg
密码:7juj
## 框架效果演示结果: ## 框架效果演示结果:
* 因为是框架没有图像化界面,演示结果就是控制台输出的数据,只能用视频展示,想看演示结果请看教学视频 * 因为是框架没有图像化界面,演示结果就是控制台输出的数据,只能用视频展示,想看演示结果请看教学视频
## 控制台输出演示 ## 控制台输出演示

@ -1,7 +1,7 @@
package org.wlld.config; package org.wlld.config;
public class Classifier {//分类器 public class Classifier {//分类器
public static final int LVQ = 1;//LVQ分类 public static final int LVQ = 1;//LVQ分类 你的训练模版量非常少 比如 一种只有几十一百张照片/分类少
public static final int DNN = 2; //使用DNN分类 public static final int DNN = 2; //使用DNN分类 训练量足够大一个种类1500+训练图片
public static final int VAvg = 3;//使用特征向量均值分类 public static final int VAvg = 3;//使用特征向量均值分类 一种只有几十一百张照片
} }

@ -37,8 +37,6 @@ public class FoodTest {
ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA3, ModelParameter.class); ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA3, ModelParameter.class);
templeConfig.insertModel(modelParameter2); templeConfig.insertModel(modelParameter2);
Operation operation = new Operation(templeConfig); Operation operation = new Operation(templeConfig);
// 一阶段 // 一阶段
// for (int j = 0; j < 1; j++) { // for (int j = 0; j < 1; j++) {
// for (int i = 1; i < 1500; i++) {//一阶段 // for (int i = 1; i < 1500; i++) {//一阶段
@ -132,7 +130,7 @@ public class FoodTest {
} }
} }
double wrongPoint = ArithUtil.div(wrong, allNub); double wrongPoint = ArithUtil.div(wrong, allNub);
System.out.println("错误率1" + (wrongPoint * 100) + "%"); System.out.println("错误率" + (wrongPoint * 100) + "%");
ModelParameter modelParameter = templeConfig.getModel(); ModelParameter modelParameter = templeConfig.getModel();
String model = JSON.toJSONString(modelParameter); String model = JSON.toJSONString(modelParameter);
System.out.println(model); System.out.println(model);

@ -40,6 +40,8 @@ public class HelloWorld {
} }
public static void pictureDemo1() throws Exception {//图像学习DEMO public static void pictureDemo1() throws Exception {//图像学习DEMO
//easyAI 包持续更新,现阶段一直在优化
//
Picture picture = new Picture(); Picture picture = new Picture();
//使用精度计算 //使用精度计算
TempleConfig templeConfig = new TempleConfig(false, true); TempleConfig templeConfig = new TempleConfig(false, true);
@ -55,10 +57,10 @@ public class HelloWorld {
for (int i = 1; i < 1900; i++) {//一阶段 for (int i = 1; i < 1900; i++) {//一阶段
System.out.println("study1===================" + i); System.out.println("study1===================" + i);
//读取本地URL地址图片,并转化成矩阵 //读取本地URL地址图片,并转化成矩阵
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg");
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg");
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
operation.learning(a, 1, false); operation.learning(a, 1, false);
operation.learning(b, 2, false); operation.learning(b, 2, false);
operation.learning(c, 3, false); operation.learning(c, 3, false);
@ -66,12 +68,12 @@ public class HelloWorld {
} }
//二阶段学习 //二阶段学习
for (int i = 1; i < 1900; i++) { for (int i = 1; i < 1900; i++) {//特征归一化
System.out.println("avg==" + i); System.out.println("avg==" + i);
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg"); Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg");
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg"); Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg"); Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg");
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg"); Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
operation.normalization(a, templeConfig.getConvolutionNerveManager()); operation.normalization(a, templeConfig.getConvolutionNerveManager());
operation.normalization(b, templeConfig.getConvolutionNerveManager()); operation.normalization(b, templeConfig.getConvolutionNerveManager());
operation.normalization(c, templeConfig.getConvolutionNerveManager()); operation.normalization(c, templeConfig.getConvolutionNerveManager());

Loading…
Cancel
Save