|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""export mindir."""
|
|
|
|
import json
|
|
|
|
from os.path import join
|
|
|
|
import argparse
|
|
|
|
from warnings import warn
|
|
|
|
from hparams import hparams, hparams_debug_string
|
|
|
|
from mindspore import context, Tensor
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
|
|
|
from wavenet_vocoder import WaveNet
|
|
|
|
from wavenet_vocoder.util import is_mulaw_quantize, is_scalar_input
|
|
|
|
import numpy as np
|
|
|
|
from src.loss import PredictNet
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='TTS training')
|
|
|
|
parser.add_argument('--preset', type=str, default='', help='Path of preset parameters (json).')
|
|
|
|
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints_test',
|
|
|
|
help='Directory where to save model checkpoints [default: checkpoints].')
|
|
|
|
parser.add_argument('--speaker_id', type=str, default='',
|
|
|
|
help=' Use specific speaker of data in case for multi-speaker datasets.')
|
|
|
|
parser.add_argument('--pretrain_ckpt', type=str, default='', help='Pretrained checkpoint path')
|
|
|
|
parser.add_argument('--platform', type=str, default='GPU', choices=('GPU', 'CPU'),
|
|
|
|
help='run platform, support GPU and CPU. Default: GPU')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.platform, save_graphs=False)
|
|
|
|
|
|
|
|
speaker_id = int(args.speaker_id) if args.speaker_id != '' else None
|
|
|
|
if args.preset is not None:
|
|
|
|
with open(args.preset) as f:
|
|
|
|
hparams.parse_json(f.read())
|
|
|
|
|
|
|
|
assert hparams.name == "wavenet_vocoder"
|
|
|
|
print(hparams_debug_string())
|
|
|
|
|
|
|
|
fs = hparams.sample_rate
|
|
|
|
output_json_path = join(args.checkpoint_dir, "hparams.json")
|
|
|
|
with open(output_json_path, "w") as f:
|
|
|
|
json.dump(hparams.values(), f, indent=2)
|
|
|
|
|
|
|
|
if is_mulaw_quantize(hparams.input_type):
|
|
|
|
if hparams.out_channels != hparams.quantize_channels:
|
|
|
|
raise RuntimeError(
|
|
|
|
"out_channels must equal to quantize_chennels if input_type is 'mulaw-quantize'")
|
|
|
|
if hparams.upsample_conditional_features and hparams.cin_channels < 0:
|
|
|
|
s = "Upsample conv layers were specified while local conditioning disabled. "
|
|
|
|
s += "Notice that upsample conv layers will never be used."
|
|
|
|
warn(s)
|
|
|
|
|
|
|
|
upsample_params = hparams.upsample_params
|
|
|
|
upsample_params["cin_channels"] = hparams.cin_channels
|
|
|
|
upsample_params["cin_pad"] = hparams.cin_pad
|
|
|
|
model = WaveNet(
|
|
|
|
out_channels=hparams.out_channels,
|
|
|
|
layers=hparams.layers,
|
|
|
|
stacks=hparams.stacks,
|
|
|
|
residual_channels=hparams.residual_channels,
|
|
|
|
gate_channels=hparams.gate_channels,
|
|
|
|
skip_out_channels=hparams.skip_out_channels,
|
|
|
|
cin_channels=hparams.cin_channels,
|
|
|
|
gin_channels=hparams.gin_channels,
|
|
|
|
n_speakers=hparams.n_speakers,
|
|
|
|
dropout=hparams.dropout,
|
|
|
|
kernel_size=hparams.kernel_size,
|
|
|
|
cin_pad=hparams.cin_pad,
|
|
|
|
upsample_conditional_features=hparams.upsample_conditional_features,
|
|
|
|
upsample_params=upsample_params,
|
|
|
|
scalar_input=is_scalar_input(hparams.input_type),
|
|
|
|
output_distribution=hparams.output_distribution,
|
|
|
|
)
|
|
|
|
|
|
|
|
Net = PredictNet(model)
|
|
|
|
Net.set_train(False)
|
|
|
|
param_dict = load_checkpoint(args.pretrain_ckpt)
|
|
|
|
load_param_into_net(model, param_dict)
|
|
|
|
print('Successfully loading the pre-trained model')
|
|
|
|
|
|
|
|
if is_mulaw_quantize(hparams.input_type):
|
|
|
|
x = np.array(np.random.random((2, 256, 10240)), dtype=np.float32)
|
|
|
|
else:
|
|
|
|
x = np.array(np.random.random((2, 1, 10240)), dtype=np.float32)
|
|
|
|
c = np.array(np.random.random((2, 80, 44)), dtype=np.float32)
|
|
|
|
g = np.array([0, 0], dtype=np.int64)
|
|
|
|
|
|
|
|
export(Net, Tensor(x), Tensor(c), Tensor(g), file_name="WaveNet", file_format='MINDIR')
|