@ -15,6 +15,7 @@
- [Model Description ](#model-description )
- [Model Description ](#model-description )
- [Performance ](#performance )
- [Performance ](#performance )
- [Evaluation Performance ](#evaluation-performance )
- [Evaluation Performance ](#evaluation-performance )
- [Inference Performance ](#inference-performance )
- [Description of Random Situation ](#description-of-random-situation )
- [Description of Random Situation ](#description-of-random-situation )
- [ModelZoo Homepage ](#modelzoo-homepage )
- [ModelZoo Homepage ](#modelzoo-homepage )
@ -139,6 +140,8 @@ sh run_eval_gpu.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [C
├── CrossEntropySmooth.py # loss definition for ImageNet2012 dataset
├── CrossEntropySmooth.py # loss definition for ImageNet2012 dataset
├── lr_generator.py # generate learning rate for each step
├── lr_generator.py # generate learning rate for each step
└── resnet.py # resnet backbone, including resnet50 and resnet101 and se-resnet50
└── resnet.py # resnet backbone, including resnet50 and resnet101 and se-resnet50
├── export.py # export model for inference
├── mindspore_hub_conf.py # mindspore hub interface
├── eval.py # eval net
├── eval.py # eval net
└── train.py # train net
└── train.py # train net
```
```
@ -254,7 +257,7 @@ Usage: sh run_eval.sh [resnet50|resnet101|se-resnet50] [cifar10|imagenet2012] [D
```
```
For distributed training, a hccl configuration file with JSON format needs to be created in advance.
For distributed training, a hccl configuration file with JSON format needs to be created in advance.
Please follow the instructions in the link [hccn_tools ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo/utils/hccl_tools).
Please follow the instructions in the link [hccn_tools ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo/utils/hccl_tools).
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
@ -313,18 +316,13 @@ epoch: 5 step: 5004, loss is 3.1978393
- Training ResNet101 with ImageNet2012 dataset
- Training ResNet101 with ImageNet2012 dataset
```
```
# distribute training result(8p)
# distribute training result(8 pcs )
epoch: 1 step: 5004, loss is 4.805483
epoch: 1 step: 5004, loss is 4.805483
epoch: 2 step: 5004, loss is 3.2121816
epoch: 2 step: 5004, loss is 3.2121816
epoch: 3 step: 5004, loss is 3.429647
epoch: 3 step: 5004, loss is 3.429647
epoch: 4 step: 5004, loss is 3.3667371
epoch: 4 step: 5004, loss is 3.3667371
epoch: 5 step: 5004, loss is 3.1718972
epoch: 5 step: 5004, loss is 3.1718972
...
...
epoch: 67 step: 5004, loss is 2.2768745
epoch: 68 step: 5004, loss is 1.7223864
epoch: 69 step: 5004, loss is 2.0665488
epoch: 70 step: 5004, loss is 1.8717369
...
```
```
- Training SE-ResNet50 with ImageNet2012 dataset
- Training SE-ResNet50 with ImageNet2012 dataset
@ -411,14 +409,14 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
| Total time | 6 mins | 20.2 mins|
| Total time | 6 mins | 20.2 mins|
| Parameters (M) | 25.5 | 25.5 |
| Parameters (M) | 25.5 | 25.5 |
| Checkpoint for Fine tuning | 179.7M (.ckpt file) |179.7M (.ckpt file)|
| Checkpoint for Fine tuning | 179.7M (.ckpt file) |179.7M (.ckpt file)|
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo/official/cv/resnet) | [Link ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo/official/cv/resnet) |
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo/official/cv/resnet) | [Link ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo/official/cv/resnet) |
#### ResNet50 on ImageNet2012
#### ResNet50 on ImageNet2012
| Parameters | Ascend 910 | GPU |
| Parameters | Ascend 910 | GPU |
| -------------------------- | -------------------------------------- |---------------------------------- |
| -------------------------- | -------------------------------------- |---------------------------------- |
| Model Version | ResNet50-v1.5 |ResNet50-v1.5|
| Model Version | ResNet50-v1.5 |ResNet50-v1.5|
| Resource | Ascend 910, CPU 2.60GHz 56cores, Memory 314G | GPU(Tesla V100 SXM2), CPU 2.1GHz 24cores, Memory 128G
| Resource | Ascend 910, CPU 2.60GHz 56cores, Memory 314G | GPU(Tesla V100 SXM2), CPU 2.1GHz 24cores, Memory 128G
| uploaded Date | 04/01/2020 (month/day/year) ; | 08/01/2020 (month/day/year)
| uploaded Date | 04/01/2020 (month/day/year) | 08/01/2020 (month/day/year)
| MindSpore Version | 0.1.0-alpha |0.6.0-alpha |
| MindSpore Version | 0.1.0-alpha |0.6.0-alpha |
| Dataset | ImageNet2012 | ImageNet2012|
| Dataset | ImageNet2012 | ImageNet2012|
| Training Parameters | epoch=90, steps per epoch=626, batch_size = 256 |epoch=90, steps per epoch=5004, batch_size = 32 |
| Training Parameters | epoch=90, steps per epoch=626, batch_size = 256 |epoch=90, steps per epoch=5004, batch_size = 32 |
@ -430,7 +428,7 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
| Total time | 114 mins | 500 mins|
| Total time | 114 mins | 500 mins|
| Parameters (M) | 25.5 | 25.5 |
| Parameters (M) | 25.5 | 25.5 |
| Checkpoint for Fine tuning | 197M (.ckpt file) |197M (.ckpt file) |
| Checkpoint for Fine tuning | 197M (.ckpt file) |197M (.ckpt file) |
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo/official/cv/resnet) | [Link ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo/official/cv/resnet) |
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo/official/cv/resnet) | [Link ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo/official/cv/resnet) |
#### ResNet101 on ImageNet2012
#### ResNet101 on ImageNet2012
| Parameters | Ascend 910 | GPU |
| Parameters | Ascend 910 | GPU |
@ -449,15 +447,14 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
| Total time | 301 mins | 1100 mins|
| Total time | 301 mins | 1100 mins|
| Parameters (M) | 44.6 | 44.6 |
| Parameters (M) | 44.6 | 44.6 |
| Checkpoint for Fine tuning | 343M (.ckpt file) |343M (.ckpt file) |
| Checkpoint for Fine tuning | 343M (.ckpt file) |343M (.ckpt file) |
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo/official/cv/resnet) | [Link ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo/official/cv/resnet) |
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo/official/cv/resnet) | [Link ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo/official/cv/resnet) |
#### SE-ResNet50 on ImageNet2012
#### SE-ResNet50 on ImageNet2012
| Parameters | Ascend 910
| Parameters | Ascend 910
| -------------------------- | ------------------------------------------------------------------------ |
| -------------------------- | ------------------------------------------------------------------------ |
| Model Version | SE-ResNet50 |
| Model Version | SE-ResNet50 |
| Resource | Ascend 910, CPU 2.60GHz 56cores, Memory 314G |
| Resource | Ascend 910, CPU 2.60GHz 56cores, Memory 314G |
| uploaded Date | 08/16/2020 (month/day/year) ; |
| uploaded Date | 08/16/2020 (month/day/year) |
| MindSpore Version | 0.7.0-alpha |
| MindSpore Version | 0.7.0-alpha |
| Dataset | ImageNet2012 |
| Dataset | ImageNet2012 |
| Training Parameters | epoch=24, steps per epoch=5004, batch_size = 32 |
| Training Parameters | epoch=24, steps per epoch=5004, batch_size = 32 |
@ -469,7 +466,62 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
| Total time | 49.3 mins |
| Total time | 49.3 mins |
| Parameters (M) | 25.5 |
| Parameters (M) | 25.5 |
| Checkpoint for Fine tuning | 215.9M (.ckpt file) |
| Checkpoint for Fine tuning | 215.9M (.ckpt file) |
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet ) |
| Scripts | [Link ](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/resnet ) |
### Inference Performance
#### ResNet50 on CIFAR-10
| Parameters | Ascend | GPU |
| ------------------- | --------------------------- | --------------------------- |
| Model Version | ResNet50-v1.5 | ResNet50-v1.5 |
| Resource | Ascend 910 | GPU |
| Uploaded Date | 04/01/2020 (month/day/year) | 08/01/2020 (month/day/year) |
| MindSpore Version | 0.1.0-alpha | 0.6.0-alpha |
| Dataset | CIFAR-10 | CIFAR-10 |
| batch_size | 32 | 32 |
| outputs | probability | probability |
| Accuracy | 91.44% | 91.37% |
| Model for inference | 91M (.air file) | |
#### ResNet50 on ImageNet2012
| Parameters | Ascend | GPU |
| ------------------- | --------------------------- | --------------------------- |
| Model Version | ResNet50-v1.5 | ResNet50-v1.5 |
| Resource | Ascend 910 | GPU |
| Uploaded Date | 04/01/2020 (month/day/year) | 08/01/2020 (month/day/year) |
| MindSpore Version | 0.1.0-alpha | 0.6.0-alpha |
| Dataset | ImageNet2012 | ImageNet2012 |
| batch_size | 256 | 32 |
| outputs | probability | probability |
| Accuracy | 76.70% | 76.74% |
| Model for inference | 98M (.air file) | |
#### ResNet101 on ImageNet2012
| Parameters | Ascend | GPU |
| ------------------- | --------------------------- | --------------------------- |
| Model Version | ResNet101 | ResNet101 |
| Resource | Ascend 910 | GPU |
| Uploaded Date | 04/01/2020 (month/day/year) | 08/01/2020 (month/day/year) |
| MindSpore Version | 0.1.0-alpha | 0.6.0-alpha |
| Dataset | ImageNet2012 | ImageNet2012 |
| batch_size | 32 | 32 |
| outputs | probability | probability |
| Accuracy | 78.53% | 78.64% |
| Model for inference | 171M (.air file) | |
#### SE-ResNet50 on ImageNet2012
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | SE-ResNet50 |
| Resource | Ascend 910 |
| Uploaded Date | 08/16/2020 (month/day/year) |
| MindSpore Version | 0.7.0-alpha |
| Dataset | ImageNet2012 |
| batch_size | 32 |
| outputs | probability |
| Accuracy | 76.80% |
| Model for inference | 109M (.air file) |
# [Description of Random Situation ](#contents )
# [Description of Random Situation ](#contents )
@ -477,4 +529,4 @@ In dataset.py, we set the seed inside “create_dataset" function. We also use r
# [ModelZoo Homepage ](#contents )
# [ModelZoo Homepage ](#contents )
Please check the official [homepage ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo).
Please check the official [homepage ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo).