@ -19,8 +19,8 @@
- [Evaluation Result ](#evaluation-result )
- [Model Description ](#model-description )
- [Performance ](#performance )
- [Training Performance ](#training-performance )
- [Evaluation Performance ](#evaluation-performance )
- [Inference Performance ](#inference-performance )
- [Description of Random Situation ](#description-of-random-situation )
- [ModelZoo Homepage ](#modelzoo-homepage )
@ -279,7 +279,7 @@ Usage: sh run_standalone_train.sh [PRETRAINED_MODEL]
"save_checkpoint": True, # whether save checkpoint or not
"save_checkpoint_epochs": 1, # save checkpoint interval
"keep_checkpoint_max": 12, # max number of saved checkpoint
"save_checkpoint_path": "./checkpoint ", # path of checkpoint
"save_checkpoint_path": "./", # path of checkpoint
"mindrecord_dir": "/home/maskrcnn/MindRecord_COCO2017_Train", # path of mindrecord
"coco_root": "/home/maskrcnn/", # path of coco root dateset
@ -335,13 +335,13 @@ Training result will be stored in the example path, whose folder name begins wit
```
# distribute training result(8p)
epoch: 1 step: 7393 ,rpn_loss: 0.10626, rcnn_loss: 0.81592, rpn_cls_loss: 0.05862, rpn_reg_loss: 0.04761, rcnn_cls_loss: 0.32642, rcnn_reg_loss: 0.15503, rcnn_mask_loss: 0.33447, total_loss: 0.9221 8
epoch: 2 step: 7393 ,rpn_loss: 0.00911, rcnn_loss: 0.34082, rpn_cls_loss: 0.00341, rpn_reg_loss: 0.00571, rcnn_cls_loss: 0.07440, rcnn_reg_loss: 0.05872, rcnn_mask_loss: 0.20764, total_loss: 0.34993
epoch: 3 step: 7393 ,rpn_loss: 0.02087, rcnn_loss: 0.98633, rpn_cls_loss: 0.00665, rpn_reg_loss: 0.01422, rcnn_cls_loss: 0.35913, rcnn_reg_loss: 0.21375, rcnn_mask_loss: 0.41382, total_loss: 1.00720
epoch: 1 step: 7393 ,rpn_loss: 0.05716, rcnn_loss: 0.81152, rpn_cls_loss: 0.04828, rpn_reg_loss: 0.00889, rcnn_cls_loss: 0.28784, rcnn_reg_loss: 0.17590, rcnn_mask_loss: 0.34790, total_loss: 0.8686 8
epoch: 2 step: 7393 ,rpn_loss: 0.00434, rcnn_loss: 0.36572, rpn_cls_loss: 0.00339, rpn_reg_loss: 0.00095, rcnn_cls_loss: 0.08240, rcnn_reg_loss: 0.05554, rcnn_mask_loss: 0.22778, total_loss: 0.37006
epoch: 3 step: 7393 ,rpn_loss: 0.00996, rcnn_loss: 0.83789, rpn_cls_loss: 0.00701, rpn_reg_loss: 0.00294, rcnn_cls_loss: 0.39478, rcnn_reg_loss: 0.14917, rcnn_mask_loss: 0.29370, total_loss: 0.84785
...
epoch: 10 step: 7393 ,rpn_loss: 0.02122, rcnn_loss: 0.55176, rpn_cls_loss: 0.00620, rpn_reg_loss: 0.01503, rcnn_cls_loss: 0.12708, rcnn_reg_loss: 0.10254, rcnn_mask_loss: 0.32227, total_loss: 0.57298
epoch: 11 step: 7393 ,rpn_loss: 0.03772, rcnn_loss: 0.60791, rpn_cls_loss: 0.03058, rpn_reg_loss: 0.00713, rcnn_cls_loss: 0.23987, rcnn_reg_loss: 0.11743, rcnn_mask_loss: 0.25049, total_loss: 0.64563
epoch: 12 step: 7393 ,rpn_loss: 0.06482, rcnn_loss: 0.47681, rpn_cls_loss: 0.04770, rpn_reg_loss: 0.01709, rcnn_cls_loss: 0.16492, rcnn_reg_loss: 0.04990, rcnn_mask_loss: 0.26196, total_loss: 0.54163
epoch: 10 step: 7393 ,rpn_loss: 0.00667, rcnn_loss: 0.65625, rpn_cls_loss: 0.00536, rpn_reg_loss: 0.00131, rcnn_cls_loss: 0.17590, rcnn_reg_loss: 0.16199, rcnn_mask_loss: 0.31812, total_loss: 0.66292
epoch: 11 step: 7393 ,rpn_loss: 0.02003, rcnn_loss: 0.52051, rpn_cls_loss: 0.01761, rpn_reg_loss: 0.00241, rcnn_cls_loss: 0.16028, rcnn_reg_loss: 0.08411, rcnn_mask_loss: 0.27588, total_loss: 0.54054
epoch: 12 step: 7393 ,rpn_loss: 0.00547, rcnn_loss: 0.39258, rpn_cls_loss: 0.00285, rpn_reg_loss: 0.00262, rcnn_cls_loss: 0.08002, rcnn_reg_loss: 0.04990, rcnn_mask_loss: 0.26245, total_loss: 0.39804
```
## [Evaluation Process ](#contents )
@ -363,39 +363,39 @@ Inference result will be stored in the example path, whose folder name is "eval"
```
Evaluate annotation type *bbox*
Accumulating evaluation results...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.376
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.598
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.405
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.239
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.414
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.475
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.378
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.602
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.407
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.242
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.417
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.528
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.371
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.572
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.653
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.497
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.524
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.56 7
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.647
Evaluate annotation type *segm*
Accumulating evaluation results...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.326
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.553
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.557
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.351
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.169
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.35 6
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.462
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.27 8
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.426
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.44 5
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.294
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.484
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.55 8
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.365
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.284
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.433
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.451
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.285
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.490
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586
```
# Model Description
## Performance
### Training Performance
### Evaluation Performance
| Parameters | MaskRCNN |
| -------------------------- | ----------------------------------------------------------- |
@ -407,13 +407,17 @@ Accumulating evaluation results...
| Training Parameters | epoch=12, batch_size = 2 |
| Optimizer | SGD |
| Loss Function | Softmax Cross Entropy, Sigmoid Cross Entropy, SmoothL1Loss |
| Speed | 1pc: 250 ms/step; 8pcs: 260 ms/step |
| Total time | 1pc: 52 hours; 8pcs: 6.6 hours |
| Parameters (M) | 280 |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn |
| Output | Probability |
| Loss | 0.39804 |
| Speed | 1pc: 193 ms/step; 8pcs: 207 ms/step |
| Total time | 1pc: 46 hours; 8pcs: 5.38 hours |
| Parameters (M) | 84.8 |
| Checkpoint for Fine tuning | 85M(.ckpt file) |
| Model for inference | 571M(.air file) |
| Scripts | [maskrcnn script ](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/maskrcnn ) |
### Evaluation Performance
### Inference Performance
| Parameters | MaskRCNN |
| ------------------- | --------------------------- |
@ -424,12 +428,12 @@ Accumulating evaluation results...
| Dataset | COCO2017 |
| batch_size | 2 |
| outputs | mAP |
| Accuracy | IoU=0.50:0.95 32.4% |
| Model for inference | 254 M (.ckpt file) |
| Accuracy | IoU=0.50:0.95 (BoundingBox 37.0%, Mask 33.5) |
| Model for inference | 170 M (.ckpt file) |
# [Description of Random Situation ](#contents )
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py for weight initialization.
# [ModelZoo Homepage ](#contents )
Please check the official [homepage ](https://gitee.com/mindspore/mindspore/tree/ maste r/model_zoo).
Please check the official [homepage ](https://gitee.com/mindspore/mindspore/tree/ r1.0 /model_zoo).