!9137 Add Beta distribution
From: @peixu_ren Reviewed-by: @zichun_ye,@sunnybeike Signed-off-by: @sunnybeikepull/9137/MERGE
commit
9f82393b24
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,245 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""test cases for Beta distribution"""
|
||||||
|
import numpy as np
|
||||||
|
from scipy import stats
|
||||||
|
from scipy import special
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
import mindspore.nn.probability.distribution as msd
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import dtype
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
|
||||||
|
class Prob(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: probability of Beta distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(Prob, self).__init__()
|
||||||
|
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, x_):
|
||||||
|
return self.b.prob(x_)
|
||||||
|
|
||||||
|
def test_pdf():
|
||||||
|
"""
|
||||||
|
Test pdf.
|
||||||
|
"""
|
||||||
|
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||||
|
expect_pdf = beta_benchmark.pdf([0.25, 0.75]).astype(np.float32)
|
||||||
|
pdf = Prob()
|
||||||
|
output = pdf(Tensor([0.25, 0.75], dtype=dtype.float32))
|
||||||
|
tol = 1e-6
|
||||||
|
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
|
||||||
|
|
||||||
|
class LogProb(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: log probability of Beta distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(LogProb, self).__init__()
|
||||||
|
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, x_):
|
||||||
|
return self.b.log_prob(x_)
|
||||||
|
|
||||||
|
def test_log_likelihood():
|
||||||
|
"""
|
||||||
|
Test log_pdf.
|
||||||
|
"""
|
||||||
|
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||||
|
expect_logpdf = beta_benchmark.logpdf([0.25, 0.75]).astype(np.float32)
|
||||||
|
logprob = LogProb()
|
||||||
|
output = logprob(Tensor([0.25, 0.75], dtype=dtype.float32))
|
||||||
|
tol = 1e-6
|
||||||
|
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
|
||||||
|
|
||||||
|
class KL(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: kl_loss of Beta distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(KL, self).__init__()
|
||||||
|
self.b = msd.Beta(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, x_, y_):
|
||||||
|
return self.b.kl_loss('Beta', x_, y_)
|
||||||
|
|
||||||
|
def test_kl_loss():
|
||||||
|
"""
|
||||||
|
Test kl_loss.
|
||||||
|
"""
|
||||||
|
concentration1_a = np.array([3.0]).astype(np.float32)
|
||||||
|
concentration0_a = np.array([4.0]).astype(np.float32)
|
||||||
|
|
||||||
|
concentration1_b = np.array([1.0]).astype(np.float32)
|
||||||
|
concentration0_b = np.array([1.0]).astype(np.float32)
|
||||||
|
|
||||||
|
total_concentration_a = concentration1_a + concentration0_a
|
||||||
|
total_concentration_b = concentration1_b + concentration0_b
|
||||||
|
log_normalization_a = np.log(special.beta(concentration1_a, concentration0_a))
|
||||||
|
log_normalization_b = np.log(special.beta(concentration1_b, concentration0_b))
|
||||||
|
expect_kl_loss = (log_normalization_b - log_normalization_a) \
|
||||||
|
- (special.digamma(concentration1_a) * (concentration1_b - concentration1_a)) \
|
||||||
|
- (special.digamma(concentration0_a) * (concentration0_b - concentration0_a)) \
|
||||||
|
+ (special.digamma(total_concentration_a) * (total_concentration_b - total_concentration_a))
|
||||||
|
|
||||||
|
kl_loss = KL()
|
||||||
|
concentration1 = Tensor(concentration1_b, dtype=dtype.float32)
|
||||||
|
concentration0 = Tensor(concentration0_b, dtype=dtype.float32)
|
||||||
|
output = kl_loss(concentration1, concentration0)
|
||||||
|
tol = 1e-6
|
||||||
|
assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
|
||||||
|
|
||||||
|
class Basics(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: mean/sd/mode of Beta distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(Basics, self).__init__()
|
||||||
|
self.b = msd.Beta(np.array([3.0]), np.array([3.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
return self.b.mean(), self.b.sd(), self.b.mode()
|
||||||
|
|
||||||
|
def test_basics():
|
||||||
|
"""
|
||||||
|
Test mean/standard deviation/mode.
|
||||||
|
"""
|
||||||
|
basics = Basics()
|
||||||
|
mean, sd, mode = basics()
|
||||||
|
beta_benchmark = stats.beta(np.array([3.0]), np.array([3.0]))
|
||||||
|
expect_mean = beta_benchmark.mean().astype(np.float32)
|
||||||
|
expect_sd = beta_benchmark.std().astype(np.float32)
|
||||||
|
expect_mode = [0.5]
|
||||||
|
tol = 1e-6
|
||||||
|
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
|
||||||
|
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
|
||||||
|
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
|
||||||
|
|
||||||
|
class Sampling(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: sample of Beta distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self, shape, seed=0):
|
||||||
|
super(Sampling, self).__init__()
|
||||||
|
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), seed=seed, dtype=dtype.float32)
|
||||||
|
self.shape = shape
|
||||||
|
|
||||||
|
def construct(self, concentration1=None, concentration0=None):
|
||||||
|
return self.b.sample(self.shape, concentration1, concentration0)
|
||||||
|
|
||||||
|
def test_sample():
|
||||||
|
"""
|
||||||
|
Test sample.
|
||||||
|
"""
|
||||||
|
shape = (2, 3)
|
||||||
|
seed = 10
|
||||||
|
concentration1 = Tensor([2.0], dtype=dtype.float32)
|
||||||
|
concentration0 = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
|
||||||
|
sample = Sampling(shape, seed=seed)
|
||||||
|
output = sample(concentration1, concentration0)
|
||||||
|
assert output.shape == (2, 3, 3)
|
||||||
|
|
||||||
|
class EntropyH(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: entropy of Beta distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(EntropyH, self).__init__()
|
||||||
|
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
return self.b.entropy()
|
||||||
|
|
||||||
|
def test_entropy():
|
||||||
|
"""
|
||||||
|
Test entropy.
|
||||||
|
"""
|
||||||
|
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||||
|
expect_entropy = beta_benchmark.entropy().astype(np.float32)
|
||||||
|
entropy = EntropyH()
|
||||||
|
output = entropy()
|
||||||
|
tol = 1e-6
|
||||||
|
assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
|
||||||
|
|
||||||
|
class CrossEntropy(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: cross entropy between Beta distributions.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(CrossEntropy, self).__init__()
|
||||||
|
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, x_, y_):
|
||||||
|
entropy = self.b.entropy()
|
||||||
|
kl_loss = self.b.kl_loss('Beta', x_, y_)
|
||||||
|
h_sum_kl = entropy + kl_loss
|
||||||
|
cross_entropy = self.b.cross_entropy('Beta', x_, y_)
|
||||||
|
return h_sum_kl - cross_entropy
|
||||||
|
|
||||||
|
def test_cross_entropy():
|
||||||
|
"""
|
||||||
|
Test cross_entropy.
|
||||||
|
"""
|
||||||
|
cross_entropy = CrossEntropy()
|
||||||
|
concentration1 = Tensor([3.0], dtype=dtype.float32)
|
||||||
|
concentration0 = Tensor([2.0], dtype=dtype.float32)
|
||||||
|
diff = cross_entropy(concentration1, concentration0)
|
||||||
|
tol = 1e-6
|
||||||
|
assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: expand single distribution instance to multiple graphs
|
||||||
|
by specifying the attributes.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.beta = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, x_, y_):
|
||||||
|
kl = self.beta.kl_loss('Beta', x_, y_)
|
||||||
|
prob = self.beta.prob(kl)
|
||||||
|
return prob
|
||||||
|
|
||||||
|
def test_multiple_graphs():
|
||||||
|
"""
|
||||||
|
Test multiple graphs case.
|
||||||
|
"""
|
||||||
|
prob = Net()
|
||||||
|
concentration1_a = np.array([3.0]).astype(np.float32)
|
||||||
|
concentration0_a = np.array([1.0]).astype(np.float32)
|
||||||
|
concentration1_b = np.array([2.0]).astype(np.float32)
|
||||||
|
concentration0_b = np.array([1.0]).astype(np.float32)
|
||||||
|
ans = prob(Tensor(concentration1_b), Tensor(concentration0_b))
|
||||||
|
|
||||||
|
total_concentration_a = concentration1_a + concentration0_a
|
||||||
|
total_concentration_b = concentration1_b + concentration0_b
|
||||||
|
log_normalization_a = np.log(special.beta(concentration1_a, concentration0_a))
|
||||||
|
log_normalization_b = np.log(special.beta(concentration1_b, concentration0_b))
|
||||||
|
expect_kl_loss = (log_normalization_b - log_normalization_a) \
|
||||||
|
- (special.digamma(concentration1_a) * (concentration1_b - concentration1_a)) \
|
||||||
|
- (special.digamma(concentration0_a) * (concentration0_b - concentration0_a)) \
|
||||||
|
+ (special.digamma(total_concentration_a) * (total_concentration_b - total_concentration_a))
|
||||||
|
|
||||||
|
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||||
|
expect_prob = beta_benchmark.pdf(expect_kl_loss).astype(np.float32)
|
||||||
|
|
||||||
|
tol = 1e-6
|
||||||
|
assert (np.abs(ans.asnumpy() - expect_prob) < tol).all()
|
@ -0,0 +1,212 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
Test nn.probability.distribution.Gamma.
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.nn as nn
|
||||||
|
import mindspore.nn.probability.distribution as msd
|
||||||
|
from mindspore import dtype
|
||||||
|
from mindspore import Tensor
|
||||||
|
|
||||||
|
def test_gamma_shape_errpr():
|
||||||
|
"""
|
||||||
|
Invalid shapes.
|
||||||
|
"""
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||||
|
|
||||||
|
def test_type():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
msd.Gamma(0., 1., dtype=dtype.int32)
|
||||||
|
|
||||||
|
def test_name():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
msd.Gamma(0., 1., name=1.0)
|
||||||
|
|
||||||
|
def test_seed():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
msd.Gamma(0., 1., seed='seed')
|
||||||
|
|
||||||
|
def test_concentration1():
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
msd.Gamma(0., 1.)
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
msd.Gamma(-1., 1.)
|
||||||
|
|
||||||
|
def test_concentration0():
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
msd.Gamma(1., 0.)
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
msd.Gamma(1., -1.)
|
||||||
|
|
||||||
|
def test_arguments():
|
||||||
|
"""
|
||||||
|
args passing during initialization.
|
||||||
|
"""
|
||||||
|
g = msd.Gamma()
|
||||||
|
assert isinstance(g, msd.Distribution)
|
||||||
|
g = msd.Gamma([3.0], [4.0], dtype=dtype.float32)
|
||||||
|
assert isinstance(g, msd.Distribution)
|
||||||
|
|
||||||
|
|
||||||
|
class GammaProb(nn.Cell):
|
||||||
|
"""
|
||||||
|
Gamma distribution: initialize with concentration1/concentration0.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(GammaProb, self).__init__()
|
||||||
|
self.gamma = msd.Gamma([3.0, 4.0], [1.0, 1.0], dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, value):
|
||||||
|
prob = self.gamma.prob(value)
|
||||||
|
log_prob = self.gamma.log_prob(value)
|
||||||
|
return prob + log_prob
|
||||||
|
|
||||||
|
def test_gamma_prob():
|
||||||
|
"""
|
||||||
|
Test probability functions: passing value through construct.
|
||||||
|
"""
|
||||||
|
net = GammaProb()
|
||||||
|
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||||
|
ans = net(value)
|
||||||
|
assert isinstance(ans, Tensor)
|
||||||
|
|
||||||
|
|
||||||
|
class GammaProb1(nn.Cell):
|
||||||
|
"""
|
||||||
|
Gamma distribution: initialize without concentration1/concentration0.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(GammaProb1, self).__init__()
|
||||||
|
self.gamma = msd.Gamma()
|
||||||
|
|
||||||
|
def construct(self, value, concentration1, concentration0):
|
||||||
|
prob = self.gamma.prob(value, concentration1, concentration0)
|
||||||
|
log_prob = self.gamma.log_prob(value, concentration1, concentration0)
|
||||||
|
return prob + log_prob
|
||||||
|
|
||||||
|
def test_gamma_prob1():
|
||||||
|
"""
|
||||||
|
Test probability functions: passing concentration1/concentration0, value through construct.
|
||||||
|
"""
|
||||||
|
net = GammaProb1()
|
||||||
|
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||||
|
concentration1 = Tensor([2.0, 3.0], dtype=dtype.float32)
|
||||||
|
concentration0 = Tensor([1.0], dtype=dtype.float32)
|
||||||
|
ans = net(value, concentration1, concentration0)
|
||||||
|
assert isinstance(ans, Tensor)
|
||||||
|
|
||||||
|
class GammaKl(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: kl_loss of Gamma distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(GammaKl, self).__init__()
|
||||||
|
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||||
|
self.g2 = msd.Gamma(dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a):
|
||||||
|
kl1 = self.g1.kl_loss('Gamma', concentration1_b, concentration0_b)
|
||||||
|
kl2 = self.g2.kl_loss('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||||
|
return kl1 + kl2
|
||||||
|
|
||||||
|
def test_kl():
|
||||||
|
"""
|
||||||
|
Test kl_loss.
|
||||||
|
"""
|
||||||
|
net = GammaKl()
|
||||||
|
concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||||
|
assert isinstance(ans, Tensor)
|
||||||
|
|
||||||
|
class GammaCrossEntropy(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: cross_entropy of Gamma distribution.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(GammaCrossEntropy, self).__init__()
|
||||||
|
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||||
|
self.g2 = msd.Gamma(dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a):
|
||||||
|
h1 = self.g1.cross_entropy('Gamma', concentration1_b, concentration0_b)
|
||||||
|
h2 = self.g2.cross_entropy('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||||
|
return h1 + h2
|
||||||
|
|
||||||
|
def test_cross_entropy():
|
||||||
|
"""
|
||||||
|
Test cross entropy between Gamma distributions.
|
||||||
|
"""
|
||||||
|
net = GammaCrossEntropy()
|
||||||
|
concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||||
|
ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||||
|
assert isinstance(ans, Tensor)
|
||||||
|
|
||||||
|
class GammaBasics(nn.Cell):
|
||||||
|
"""
|
||||||
|
Test class: basic mean/sd function.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(GammaBasics, self).__init__()
|
||||||
|
self.g = msd.Gamma(np.array([3.0, 4.0]), np.array([4.0, 6.0]), dtype=dtype.float32)
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
mean = self.g.mean()
|
||||||
|
sd = self.g.sd()
|
||||||
|
mode = self.g.mode()
|
||||||
|
return mean + sd + mode
|
||||||
|
|
||||||
|
def test_bascis():
|
||||||
|
"""
|
||||||
|
Test mean/sd/mode/entropy functionality of Gamma.
|
||||||
|
"""
|
||||||
|
net = GammaBasics()
|
||||||
|
ans = net()
|
||||||
|
assert isinstance(ans, Tensor)
|
||||||
|
|
||||||
|
class GammaConstruct(nn.Cell):
|
||||||
|
"""
|
||||||
|
Gamma distribution: going through construct.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(GammaConstruct, self).__init__()
|
||||||
|
self.gamma = msd.Gamma([3.0], [4.0])
|
||||||
|
self.gamma1 = msd.Gamma()
|
||||||
|
|
||||||
|
def construct(self, value, concentration1, concentration0):
|
||||||
|
prob = self.gamma('prob', value)
|
||||||
|
prob1 = self.gamma('prob', value, concentration1, concentration0)
|
||||||
|
prob2 = self.gamma1('prob', value, concentration1, concentration0)
|
||||||
|
return prob + prob1 + prob2
|
||||||
|
|
||||||
|
def test_gamma_construct():
|
||||||
|
"""
|
||||||
|
Test probability function going through construct.
|
||||||
|
"""
|
||||||
|
net = GammaConstruct()
|
||||||
|
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||||
|
concentration1 = Tensor([0.0], dtype=dtype.float32)
|
||||||
|
concentration0 = Tensor([1.0], dtype=dtype.float32)
|
||||||
|
ans = net(value, concentration1, concentration0)
|
||||||
|
assert isinstance(ans, Tensor)
|
Loading…
Reference in new issue