|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import collections
|
|
|
|
from collections import defaultdict
|
|
|
|
import contextlib
|
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import six
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from .. import compat as cpt
|
|
|
|
from .proto import framework_pb2
|
|
|
|
try:
|
|
|
|
if os.name == 'nt':
|
|
|
|
import sys
|
|
|
|
third_lib_path = os.path.abspath(os.path.dirname(
|
|
|
|
__file__)) + os.sep + '..' + os.sep + 'libs'
|
|
|
|
os.environ['path'] += ';' + third_lib_path
|
|
|
|
sys.path.append(third_lib_path)
|
|
|
|
|
|
|
|
from . import core
|
|
|
|
except ImportError as e:
|
|
|
|
if os.name == 'nt':
|
|
|
|
raise ImportError(
|
|
|
|
"""NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
|
|
|
|
if you encounters \"mkldnn.dll not found\" errors. If you have python
|
|
|
|
installed in other directory, replace \"c:\python27\lib" with your own
|
|
|
|
directory. The original error is: \n""" + cpt.get_exception_message(e))
|
|
|
|
else:
|
|
|
|
raise ImportError(
|
|
|
|
"""NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
|
|
|
|
if you encounters \"libmkldnn.so not found\" errors. If you have python
|
|
|
|
installed in other directory, replace \"/usr/local/lib\" with your own
|
|
|
|
directory. The original error is: \n""" + cpt.get_exception_message(e))
|
|
|
|
except Exception as e:
|
|
|
|
raise e
|
|
|
|
from . import unique_name
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'Program',
|
|
|
|
'default_startup_program',
|
|
|
|
'default_main_program',
|
|
|
|
'program_guard',
|
|
|
|
'name_scope',
|
|
|
|
]
|
|
|
|
|
|
|
|
EMPTY_VAR_NAME = core.kEmptyVarName()
|
|
|
|
TEMP_VAR_NAME = core.kTempVarName()
|
|
|
|
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
|
|
|
|
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
|
|
|
|
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()
|
|
|
|
|
|
|
|
_imperative_tracer_ = None
|
|
|
|
|
|
|
|
|
|
|
|
def _in_imperative_mode():
|
|
|
|
return _imperative_tracer_ is not None
|
|
|
|
|
|
|
|
|
|
|
|
def _imperative_tracer():
|
|
|
|
return _imperative_tracer_
|
|
|
|
|
|
|
|
|
|
|
|
class NameScope(object):
|
|
|
|
def __init__(self, name="", parent=None):
|
|
|
|
self._children = dict()
|
|
|
|
self._name = name
|
|
|
|
self._parent = parent
|
|
|
|
|
|
|
|
def child(self, prefix):
|
|
|
|
if prefix not in self._children:
|
|
|
|
new_child = NameScope(prefix, self)
|
|
|
|
self._children[prefix] = [new_child]
|
|
|
|
else:
|
|
|
|
new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
|
|
|
|
self)
|
|
|
|
self._children[prefix].append(new_child)
|
|
|
|
return new_child
|
|
|
|
|
|
|
|
def parent(self):
|
|
|
|
return self._parent
|
|
|
|
|
|
|
|
def name(self):
|
|
|
|
return self._name
|
|
|
|
|
|
|
|
|
|
|
|
_name_scope = NameScope()
|
|
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def name_scope(prefix=None):
|
|
|
|
"""
|
|
|
|
Generate hierarchical name prefix for the operators.
|
|
|
|
|
|
|
|
Note: This should only used for debugging and visualization purpose.
|
|
|
|
Don't use it for serious analysis such as graph/program transformations.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prefix(str): prefix.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
with name_scope("encoder"):
|
|
|
|
...
|
|
|
|
with name_scope("decoder"):
|
|
|
|
...
|
|
|
|
with name_scope("attention"):
|
|
|
|
...
|
|
|
|
"""
|
|
|
|
# TODO(panyx0718): Only [0-9a-z].
|
|
|
|
assert prefix, "namescope prefix cannot be empty."
|
|
|
|
global _name_scope
|
|
|
|
_name_scope = _name_scope.child(prefix)
|
|
|
|
yield
|
|
|
|
_name_scope = _name_scope.parent()
|
|
|
|
|
|
|
|
|
|
|
|
def _full_name_scope():
|
|
|
|
global _name_scope
|
|
|
|
scope = _name_scope
|
|
|
|
name = ""
|
|
|
|
while scope:
|
|
|
|
name = scope.name() + "/" + name
|
|
|
|
scope = scope.parent()
|
|
|
|
return name
|
|
|
|
|
|
|
|
|
|
|
|
def generate_control_dev_var_name():
|
|
|
|
import random
|
|
|
|
return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
|
|
|
|
|
|
|
|
|
|
|
|
def grad_var_name(var_name):
|
|
|
|
"""
|
|
|
|
Returns:
|
|
|
|
str: gradient name for a certain var name
|
|
|
|
"""
|
|
|
|
return var_name + GRAD_VAR_SUFFIX
|
|
|
|
|
|
|
|
|
|
|
|
def convert_np_dtype_to_dtype_(np_dtype):
|
|
|
|
"""
|
|
|
|
Convert the data type in numpy to the data type in Paddle
|
|
|
|
|
|
|
|
Args:
|
|
|
|
np_dtype(np.dtype): the data type in numpy.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
core.VarDesc.VarType: the data type in Paddle.
|
|
|
|
|
|
|
|
"""
|
|
|
|
dtype = np.dtype(np_dtype)
|
|
|
|
if dtype == np.float32:
|
|
|
|
return core.VarDesc.VarType.FP32
|
|
|
|
elif dtype == np.float64:
|
|
|
|
return core.VarDesc.VarType.FP64
|
|
|
|
elif dtype == np.float16:
|
|
|
|
return core.VarDesc.VarType.FP16
|
|
|
|
elif dtype == np.int32:
|
|
|
|
return core.VarDesc.VarType.INT32
|
|
|
|
elif dtype == np.int16:
|
|
|
|
return core.VarDesc.VarType.INT16
|
|
|
|
elif dtype == np.int64:
|
|
|
|
return core.VarDesc.VarType.INT64
|
|
|
|
elif dtype == np.bool:
|
|
|
|
return core.VarDesc.VarType.BOOL
|
|
|
|
elif dtype == np.uint16:
|
|
|
|
return core.VarDesc.VarType.INT16
|
|
|
|
elif dtype == np.uint8:
|
|
|
|
return core.VarDesc.VarType.UINT8
|
|
|
|
elif dtype == np.int8:
|
|
|
|
return core.VarDesc.VarType.INT8
|
|
|
|
else:
|
|
|
|
raise ValueError("Not supported numpy dtype %s" % dtype)
|
|
|
|
|
|
|
|
|
|
|
|
def dtype_is_floating(dtype):
|
|
|
|
"""
|
|
|
|
Check the data type is floating or not.
|
|
|
|
Args:
|
|
|
|
dtype(np.dtype|core.VarDesc.VarType): data type.
|
|
|
|
Could be numpy format or Paddle format
|
|
|
|
|
|
|
|
Returns(bool): True if data type is a float value
|
|
|
|
|
|
|
|
"""
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
|
|
|
|
return dtype in [
|
|
|
|
core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
|
|
|
|
core.VarDesc.VarType.FP64
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def _debug_string_(proto, throw_on_error=True):
|
|
|
|
"""
|
|
|
|
Get the debug string of a protobuf message. The message could be not
|
|
|
|
initialized.
|
|
|
|
Args:
|
|
|
|
proto(google.protobuf.message.Message): The protobuf message
|
|
|
|
throw_on_error(bool): True if raise an error when the protobuf message
|
|
|
|
is not initialized.
|
|
|
|
|
|
|
|
Returns(str): The debug string of the protobuf message
|
|
|
|
|
|
|
|
"""
|
|
|
|
error_fields = list()
|
|
|
|
if not proto.IsInitialized(error_fields) and throw_on_error:
|
|
|
|
raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
|
|
|
|
format(error_fields, proto))
|
|
|
|
return proto.__str__()
|
|
|
|
|
|
|
|
|
|
|
|
class Variable(object):
|
|
|
|
"""
|
|
|
|
In Fluid, every input and output of an operator is a variable. In most
|
|
|
|
cases, variables are used for holding different kinds of data or training
|
|
|
|
labels. A variable belongs to a block. All variable has its own name and
|
|
|
|
two variables in different blocks could have the same name.
|
|
|
|
|
|
|
|
There are many kinds of variables. Each kind of them has its own attributes
|
|
|
|
and usages. Please reference the framework.proto for details.
|
|
|
|
|
|
|
|
Most of a Variable's member variables can be setted to be None. It mean
|
|
|
|
it is not available or will be specified later.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
block(Block): The block that the variable belongs to.
|
|
|
|
type(core.VarDesc.VarType): Variable type. Please reference the
|
|
|
|
framework.proto for details.
|
|
|
|
name(str|None): The name of the variable. If setted None, it will be
|
|
|
|
generated automatically. Default: None
|
|
|
|
shape(tuple|list|None): The shape of the variable. -1 means the batch size.
|
|
|
|
Some kinds of variable do not contain shape, just set it to None.
|
|
|
|
Default: None
|
|
|
|
dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
|
|
|
|
Default: None
|
|
|
|
lod_level (int|None): The level of lod tensor. 0 means it is not a time
|
|
|
|
series data.
|
|
|
|
Default: None
|
|
|
|
capacity (int|None): The capacity of Channel variable. Ignored for other
|
|
|
|
types. Default: None
|
|
|
|
persistable (bool|None): True if the variable is persistable. A persistable
|
|
|
|
variable will not be deleted after an iteration ending. Defaults: None.
|
|
|
|
error_clip (BaseErrorClipAttr|None): The error clip attributes of the
|
|
|
|
corresponding gradient variable. Default: None
|
|
|
|
stop_gradient (bool): True if the variable will stop to calculate its
|
|
|
|
gradients when backward. Default: False.
|
|
|
|
is_data (bool): True if the variable is an input data. Default: False
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
The constructor of Variable should not be invoked directly. Please
|
|
|
|
use `Block.create_var` to create a variable.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
cur_program = Program()
|
|
|
|
cur_block = cur_program.current_block()
|
|
|
|
new_variable = cur_block.create_var(name="X",
|
|
|
|
shape=[-1, 23, 48],
|
|
|
|
dtype='float32')
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
block,
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
name=None,
|
|
|
|
shape=None,
|
|
|
|
dtype=None,
|
|
|
|
lod_level=None,
|
|
|
|
capacity=None,
|
|
|
|
persistable=None,
|
|
|
|
error_clip=None,
|
|
|
|
stop_gradient=False,
|
|
|
|
is_data=False,
|
|
|
|
**kwargs):
|
|
|
|
self.block = block
|
|
|
|
self.error_clip = error_clip
|
|
|
|
|
|
|
|
if name is None:
|
|
|
|
name = unique_name.generate('_generated_var')
|
|
|
|
is_new_var = False
|
|
|
|
name = cpt.to_text(name)
|
|
|
|
self.desc = self.block.desc.find_var(cpt.to_bytes(name))
|
|
|
|
|
|
|
|
if self.desc is None:
|
|
|
|
self.desc = self.block.desc.var(cpt.to_bytes(name))
|
|
|
|
is_new_var = True
|
|
|
|
|
|
|
|
if is_new_var:
|
|
|
|
self.desc.set_type(type)
|
|
|
|
elif self.desc.type() != type:
|
|
|
|
raise ValueError("Variable {0} has been created before. The "
|
|
|
|
"previous type is {1}; the new type is {2}. They"
|
|
|
|
" are not matched".format(self.name,
|
|
|
|
self.desc.type(), type))
|
|
|
|
|
|
|
|
if shape is not None:
|
|
|
|
if is_new_var:
|
|
|
|
self.desc.set_shape(shape)
|
|
|
|
else:
|
|
|
|
old_shape = self.shape
|
|
|
|
shape = tuple(shape)
|
|
|
|
if shape != old_shape:
|
|
|
|
raise ValueError(
|
|
|
|
"Variable {0} has been created before. the previous "
|
|
|
|
"shape is {1}; the new shape is {2}. They are not "
|
|
|
|
"matched.".format(self.name, old_shape, shape))
|
|
|
|
if dtype is not None:
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
if is_new_var:
|
|
|
|
self.desc.set_dtype(dtype)
|
|
|
|
else:
|
|
|
|
old_dtype = self.dtype
|
|
|
|
if dtype != old_dtype:
|
|
|
|
raise ValueError("Variable {0} has been created before. "
|
|
|
|
"The previous data type is {1}; the new "
|
|
|
|
"data type is {2}. They are not "
|
|
|
|
"matched.".format(self.name, old_dtype,
|
|
|
|
dtype))
|
|
|
|
|
|
|
|
if lod_level is not None:
|
|
|
|
if is_new_var:
|
|
|
|
self.desc.set_lod_level(lod_level)
|
|
|
|
else:
|
|
|
|
if lod_level != self.lod_level:
|
|
|
|
raise ValueError("Variable {0} has been created before. "
|
|
|
|
"The previous lod_level is {1}; the new "
|
|
|
|
"lod_level is {2}. They are not "
|
|
|
|
"matched".format(self.name, self.lod_level,
|
|
|
|
lod_level))
|
|
|
|
if persistable is not None:
|
|
|
|
if is_new_var:
|
|
|
|
self.desc.set_persistable(persistable)
|
|
|
|
else:
|
|
|
|
if persistable != self.persistable:
|
|
|
|
raise ValueError(
|
|
|
|
"Variable {0} has been created before."
|
|
|
|
"The previous persistable is {1}; the new "
|
|
|
|
"persistable is {2}. They are not matched".format(
|
|
|
|
self.name, self.persistable, persistable))
|
|
|
|
|
|
|
|
if capacity is not None:
|
|
|
|
if is_new_var:
|
|
|
|
self.desc.set_capacity(capacity)
|
|
|
|
else:
|
|
|
|
# TODO(abhinavarora) : Compare with set capacity once,
|
|
|
|
# get_capacity is implemented
|
|
|
|
pass
|
|
|
|
|
|
|
|
self.block.vars[name] = self
|
|
|
|
self.op = None
|
|
|
|
self.stop_gradient = stop_gradient
|
|
|
|
self.is_data = is_data
|
|
|
|
if _in_imperative_mode():
|
|
|
|
self._ivar = kwargs.get("ivar", None)
|
|
|
|
if not self._ivar:
|
|
|
|
self._ivar = core.VarBase()
|
|
|
|
self._ivar.desc = self.desc
|
|
|
|
self._ivar.stop_gradient = stop_gradient
|
|
|
|
|
|
|
|
def _numpy(self):
|
|
|
|
tensor = self._ivar.value().get_tensor()
|
|
|
|
return np.array(tensor)
|
|
|
|
|
|
|
|
def _backward(self):
|
|
|
|
self._ivar._run_backward()
|
|
|
|
|
|
|
|
def _gradient(self):
|
|
|
|
return np.array(self._ivar._grad_value())
|
|
|
|
|
|
|
|
def _clear(self):
|
|
|
|
self._ivar._clear()
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.to_string(True)
|
|
|
|
|
|
|
|
def to_string(self, throw_on_error, with_details=False):
|
|
|
|
"""
|
|
|
|
Get debug string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
throw_on_error(bool): True if raise an exception when self is
|
|
|
|
not initialized.
|
|
|
|
with_details(bool): more details about variables and parameters
|
|
|
|
(e.g. trainable, optimize_attr, ...) will be printed when
|
|
|
|
with_details is True. Default False;
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The debug string.
|
|
|
|
"""
|
|
|
|
assert isinstance(throw_on_error, bool) and isinstance(with_details,
|
|
|
|
bool)
|
|
|
|
protostr = self.desc.serialize_to_string()
|
|
|
|
proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
|
|
|
|
res_str = _debug_string_(proto, throw_on_error)
|
|
|
|
if with_details:
|
|
|
|
additional_attr = ("error_clip", "stop_gradient")
|
|
|
|
for attr_name in additional_attr:
|
|
|
|
res_str += "%s: %s\n" % (
|
|
|
|
attr_name, six.binary_type(getattr(self, attr_name)))
|
|
|
|
return res_str
|
|
|
|
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
|
|
def _set_desc(self, input):
|
|
|
|
"""
|
|
|
|
Set the variable description.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input(core.VarDesc): The new VarDesc.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
self.desc = input
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _stop_gradient(self):
|
|
|
|
return self._ivar.stop_gradient
|
|
|
|
|
|
|
|
@_stop_gradient.setter
|
|
|
|
def _stop_gradient(self, s):
|
|
|
|
self._ivar.stop_gradient = s
|
|
|
|
|
|
|
|
@property
|
|
|
|
def persistable(self):
|
|
|
|
return self.desc.persistable()
|
|
|
|
|
|
|
|
@persistable.setter
|
|
|
|
def persistable(self, p):
|
|
|
|
self.desc.set_persistable(p)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def name(self):
|
|
|
|
return cpt.to_text(self.desc.name())
|
|
|
|
|
|
|
|
@name.setter
|
|
|
|
def name(self, new_name):
|
|
|
|
self.desc.set_name(new_name)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def shape(self):
|
|
|
|
# convert to tuple, make it as same as numpy API.
|
|
|
|
return tuple(self.desc.shape())
|
|
|
|
|
|
|
|
@property
|
|
|
|
def dtype(self):
|
|
|
|
return self.desc.dtype()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lod_level(self):
|
|
|
|
return self.desc.lod_level()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def type(self):
|
|
|
|
return self.desc.type()
|
|
|
|
|
|
|
|
def _set_error_clip(self, error_clip):
|
|
|
|
"""
|
|
|
|
Set the error_clip.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
error_clip(BaseErrorClipAttr) : The new error_clip.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
self.error_clip = error_clip
|
|
|
|
|
|
|
|
|
|
|
|
def get_all_op_protos():
|
|
|
|
"""
|
|
|
|
Get all registered op proto from PaddlePaddle C++ end.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: list of OpProto.
|
|
|
|
"""
|
|
|
|
protostrs = core.get_all_op_protos()
|
|
|
|
ret_values = []
|
|
|
|
for pbstr in protostrs:
|
|
|
|
op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
|
|
|
|
ret_values.append(op_proto)
|
|
|
|
return ret_values
|
|
|
|
|
|
|
|
|
|
|
|
class OpProtoHolder(object):
|
|
|
|
"""
|
|
|
|
A global variable to hold all OpProtos from C++ as a map
|
|
|
|
"""
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def instance(cls):
|
|
|
|
if not hasattr(cls, '_instance'):
|
|
|
|
cls._instance = cls()
|
|
|
|
return cls._instance
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
assert not hasattr(
|
|
|
|
self.__class__,
|
|
|
|
'_instance'), 'Please use `instance()` to get OpProtoHolder object!'
|
|
|
|
op_protos = get_all_op_protos()
|
|
|
|
self.op_proto_map = {}
|
|
|
|
for proto in op_protos:
|
|
|
|
self.op_proto_map[proto.type] = proto
|
|
|
|
|
|
|
|
def get_op_proto(self, type):
|
|
|
|
"""
|
|
|
|
Get OpProto by a type string.
|
|
|
|
Args:
|
|
|
|
type(str): The type that operator registered in C++ side.
|
|
|
|
|
|
|
|
Returns(framework_pb2.OpProto): The OpProto
|
|
|
|
|
|
|
|
"""
|
|
|
|
if type not in self.op_proto_map:
|
|
|
|
raise ValueError("Operator \"%s\" has not been registered." % type)
|
|
|
|
return self.op_proto_map[type]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def generated_op_attr_names():
|
|
|
|
return {
|
|
|
|
core.op_proto_and_checker_maker.kOpRoleAttrName(),
|
|
|
|
core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
|
|
|
|
core.op_proto_and_checker_maker.kOpNameScopeAttrName()
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Operator(object):
|
|
|
|
"""
|
|
|
|
In Fluid, all the operation are represented by Operator, and Operator
|
|
|
|
is regarded as a build in an instruction of a Block. Users can use the
|
|
|
|
build in instructions to describe their neural network.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
block(Block): The block has the current operator.
|
|
|
|
desc(core.OpDesc): The protobuf description of Operator.
|
|
|
|
type(str): The type of operator. Default None.
|
|
|
|
inputs(dict): The input of this Operator. it is a dictionary, for every
|
|
|
|
element, key is the input parameter name, and value is a list of
|
|
|
|
variables. Default None.
|
|
|
|
outputs(dict): The output of this Operator. it is a dictionary, for
|
|
|
|
every element, key is the input parameter name, and value is a list
|
|
|
|
of variables. Default None.
|
|
|
|
attrs(dict): The attributes of this Operator. it is a dictionary, for
|
|
|
|
every element, key is attribute name, and value is the attribute value.
|
|
|
|
The attribute type should be as same as the type registered in C++ side.
|
|
|
|
Default None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Operator: The initialized Operator.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the passed input, output and attrs doesn't match the
|
|
|
|
initializing Operator's that registered in C++ side.
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
The constructor of operator should not be invoked directly. Use
|
|
|
|
Block.append_op or Block._prepend_op instead.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
cur_program = Program()
|
|
|
|
cur_block = cur_program.current_block()
|
|
|
|
# var1 += var2 + var3
|
|
|
|
cur_block.append_op(type="sum",
|
|
|
|
inputs={"X": [var1, var2, var3]},
|
|
|
|
outputs={"Out": [var1]})
|
|
|
|
"""
|
|
|
|
OP_WITHOUT_KERNEL_SET = {
|
|
|
|
'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
|
|
|
|
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
|
|
|
|
'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
|
|
|
|
'checkpoint_notify', 'gen_nccl_id'
|
|
|
|
}
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
block,
|
|
|
|
desc,
|
|
|
|
type=None,
|
|
|
|
inputs=None,
|
|
|
|
outputs=None,
|
|
|
|
attrs=None):
|
|
|
|
self.block = block
|
|
|
|
self.desc = desc
|
|
|
|
# note: not add self.attrs here:
|
|
|
|
# https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
|
|
|
|
op_attrs = attrs
|
|
|
|
if op_attrs is None:
|
|
|
|
op_attrs = dict()
|
|
|
|
del attrs
|
|
|
|
|
|
|
|
op_maker = core.op_proto_and_checker_maker
|
|
|
|
|
|
|
|
if op_maker.kOpRoleAttrName() not in op_attrs:
|
|
|
|
op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
|
|
|
|
|
|
|
|
role_var_name = op_maker.kOpRoleVarAttrName()
|
|
|
|
if len(self.block.program.
|
|
|
|
op_role_var) != 0 and role_var_name not in op_attrs:
|
|
|
|
op_attrs[role_var_name] = self.block.program.op_role_var
|
|
|
|
|
|
|
|
if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
|
|
|
|
del op_attrs[role_var_name]
|
|
|
|
|
|
|
|
if len(self.desc.type()) != 0:
|
|
|
|
return
|
|
|
|
if type is None:
|
|
|
|
raise ValueError(
|
|
|
|
"`type` to initilized an Operator can not be None.")
|
|
|
|
self.desc.set_type(type)
|
|
|
|
proto = OpProtoHolder.instance().get_op_proto(type)
|
|
|
|
|
|
|
|
namescope_var_name = op_maker.kOpNameScopeAttrName()
|
|
|
|
op_attrs[namescope_var_name] = _full_name_scope()
|
|
|
|
|
|
|
|
def find_name(var_list, name):
|
|
|
|
for var_name in var_list:
|
|
|
|
if var_list[var_name] is not None and var_name == name:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
if inputs is not None:
|
|
|
|
for in_proto in proto.inputs:
|
|
|
|
found = find_name(inputs, in_proto.name)
|
|
|
|
assert found or in_proto.dispensable, "Input {} not found".format(
|
|
|
|
in_proto.name)
|
|
|
|
|
|
|
|
if found:
|
|
|
|
in_args = inputs[in_proto.name]
|
|
|
|
if not isinstance(in_args, list):
|
|
|
|
in_args = [in_args]
|
|
|
|
if not in_proto.duplicable and len(in_args) > 1:
|
|
|
|
raise ValueError(
|
|
|
|
"Input %s expects only one input, but %d are given."
|
|
|
|
% (in_proto.name, len(in_args)))
|
|
|
|
in_arg_names = []
|
|
|
|
for arg in in_args:
|
|
|
|
if isinstance(arg, six.string_types):
|
|
|
|
in_arg_names.append(arg)
|
|
|
|
elif isinstance(arg, six.binary_type):
|
|
|
|
in_arg_names.append(arg.decode())
|
|
|
|
else:
|
|
|
|
in_arg_names.append(cpt.to_text(arg.name))
|
|
|
|
self.desc.set_input(in_proto.name, in_arg_names)
|
|
|
|
else:
|
|
|
|
self.desc.set_input(in_proto.name, [])
|
|
|
|
|
|
|
|
if outputs is not None:
|
|
|
|
for m in proto.outputs:
|
|
|
|
if (m.name not in outputs) and m.dispensable:
|
|
|
|
continue
|
|
|
|
if not ((m.name in outputs) or m.dispensable):
|
|
|
|
raise ValueError(
|
|
|
|
("Incorrect setting for output(s) of "
|
|
|
|
"operator \"%s\", should set: [%s].") % (type, m.name))
|
|
|
|
for out_proto in proto.outputs:
|
|
|
|
if out_proto.name not in outputs:
|
|
|
|
continue
|
|
|
|
out_args = outputs[out_proto.name]
|
|
|
|
if not isinstance(out_args, list):
|
|
|
|
out_args = [out_args]
|
|
|
|
if not out_proto.duplicable and len(out_args) > 1:
|
|
|
|
raise ValueError(
|
|
|
|
"Output %s expects only one output, but %d are given." %
|
|
|
|
(out_proto.name, len(out_args)))
|
|
|
|
out_arg_names = []
|
|
|
|
for arg in out_args:
|
|
|
|
out_arg_names.append(cpt.to_text(arg.name))
|
|
|
|
arg.op = self
|
|
|
|
self.desc.set_output(out_proto.name, out_arg_names)
|
|
|
|
|
|
|
|
if op_attrs is not None:
|
|
|
|
if not isinstance(op_attrs, dict):
|
|
|
|
raise TypeError("'attrs' should be a dict.")
|
|
|
|
for attr in proto.attrs:
|
|
|
|
attr_name = attr.name
|
|
|
|
if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
|
|
|
|
continue
|
|
|
|
attr_val = op_attrs[attr_name]
|
|
|
|
self._update_desc_attr(attr_name, attr_val)
|
|
|
|
|
|
|
|
self.desc.check_attrs()
|
|
|
|
|
|
|
|
if self._has_kernel(type):
|
|
|
|
self.desc.infer_var_type(self.block.desc)
|
|
|
|
self.desc.infer_shape(self.block.desc)
|
|
|
|
|
|
|
|
if _in_imperative_mode():
|
|
|
|
self.iop = core.OpBase()
|
|
|
|
self.iop.desc = self.desc
|
|
|
|
self.inputs = defaultdict(list)
|
|
|
|
if inputs is not None:
|
|
|
|
for k, v in six.iteritems(inputs):
|
|
|
|
if isinstance(v, Variable):
|
|
|
|
self.inputs[k].append(v._ivar)
|
|
|
|
elif isinstance(v, list) or isinstance(v, tuple):
|
|
|
|
self.inputs[k].extend([var._ivar for var in v])
|
|
|
|
self.outputs = defaultdict(list)
|
|
|
|
if outputs is not None:
|
|
|
|
for k, v in six.iteritems(outputs):
|
|
|
|
if isinstance(v, Variable):
|
|
|
|
self.outputs[k].append(v._ivar)
|
|
|
|
elif isinstance(v, list) or isinstance(v, tuple):
|
|
|
|
self.outputs[k].extend([var._ivar for var in v])
|
|
|
|
|
|
|
|
def _has_kernel(self, op_type):
|
|
|
|
return op_type not in self.OP_WITHOUT_KERNEL_SET
|
|
|
|
|
|
|
|
def to_string(self, throw_on_error):
|
|
|
|
"""
|
|
|
|
Get debug string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
throw_on_error(bool): Whether to raise exception if self is not
|
|
|
|
initialized.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The debug string.
|
|
|
|
|
|
|
|
"""
|
|
|
|
protostr = self.desc.serialize_to_string()
|
|
|
|
proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
|
|
|
|
return _debug_string_(proto, throw_on_error)
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.to_string(True)
|
|
|
|
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
|
|
@property
|
|
|
|
def type(self):
|
|
|
|
return self.desc.type()
|
|
|
|
|
|
|
|
def input(self, name):
|
|
|
|
"""
|
|
|
|
Get the input arguments according to the input parameter name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): The input parameter name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: return the list of argument names that associated with \
|
|
|
|
the specific parameter name.
|
|
|
|
"""
|
|
|
|
return self.desc.input(name)
|
|
|
|
|
|
|
|
def _rename_input(self, old_name, new_name):
|
|
|
|
"""
|
|
|
|
Rename the `old_name` to `new_name`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
old_name(str): The old name of the Operator's input.
|
|
|
|
new_name(str): The new name of the Operator's input.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
self.desc._rename_input(old_name, new_name)
|
|
|
|
|
|
|
|
def _rename_output(self, old_name, new_name):
|
|
|
|
"""
|
|
|
|
Rename the `old_name` to `new_name`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
old_name(str): The old name of the Operator's output.
|
|
|
|
new_name(str): The new name of the Operator's output.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
self.desc._rename_output(old_name, new_name)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def input_names(self):
|
|
|
|
return self.desc.input_names()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def input_arg_names(self):
|
|
|
|
return self.desc.input_arg_names()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def output_arg_names(self):
|
|
|
|
return self.desc.output_arg_names()
|
|
|
|
|
|
|
|
def output(self, name):
|
|
|
|
"""
|
|
|
|
Get output arguments by the output parameter name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): The output parameter name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: return the list of argument names associated with \
|
|
|
|
the specific parameter name.
|
|
|
|
"""
|
|
|
|
return self.desc.output(name)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def output_names(self):
|
|
|
|
return self.desc.output_names()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def idx(self):
|
|
|
|
for i, op in enumerate(self.block.ops):
|
|
|
|
if op == self:
|
|
|
|
return i
|
|
|
|
raise ValueError(
|
|
|
|
"Can't find op itself in it's block. It could be a bug of Paddle.")
|
|
|
|
|
|
|
|
def has_attr(self, name):
|
|
|
|
"""
|
|
|
|
Whether this Operator has the attribute with name or not.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if has this attribute.
|
|
|
|
|
|
|
|
"""
|
|
|
|
return self.desc.has_attr(name)
|
|
|
|
|
|
|
|
def attr_type(self, name):
|
|
|
|
"""
|
|
|
|
Get the type of attribute by attribute's name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
core.AttrType: the attribute type.
|
|
|
|
"""
|
|
|
|
return self.desc.attr_type(name)
|
|
|
|
|
|
|
|
def _set_attr(self, name, val):
|
|
|
|
"""
|
|
|
|
Set the value of attribute by attribute's name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
val(bool|int|str|float|list): the value of the attribute.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the type of value doesn't match with desc.attr_type(name).
|
|
|
|
"""
|
|
|
|
self._update_desc_attr(name, val)
|
|
|
|
|
|
|
|
def _update_desc_attr(self, name, val):
|
|
|
|
"""
|
|
|
|
Update the value of desc's attribute by attribute's name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
val(bool|int|str|float|list): the value of the attribute.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the type of value doesn't match with desc.attr_type(name).
|
|
|
|
"""
|
|
|
|
if isinstance(val, Block):
|
|
|
|
self.desc.set_block_attr(name, val.desc)
|
|
|
|
elif isinstance(val, list) and val and all(
|
|
|
|
isinstance(v, Block) for v in val):
|
|
|
|
self.desc.set_blocks_attr(name, [v.desc for v in val])
|
|
|
|
elif isinstance(val, core.BlockDesc) or \
|
|
|
|
isinstance(val, core.ProgramDesc):
|
|
|
|
self.desc.set_serialized_attr(name, val.serialize_to_string())
|
|
|
|
else:
|
|
|
|
self.desc._set_attr(name, val)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def attr_names(self):
|
|
|
|
return self.desc.attr_names()
|
|
|
|
|
|
|
|
def attr(self, name):
|
|
|
|
"""
|
|
|
|
Get the attribute by name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool|int|str|float|list: The attribute value. The return value
|
|
|
|
can be any valid attribute type.
|
|
|
|
"""
|
|
|
|
return self.desc.attr(name)
|
|
|
|
|
|
|
|
def _block_attr_id(self, name):
|
|
|
|
"""
|
|
|
|
Get the block attribute's id by name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
int: the block index.
|
|
|
|
"""
|
|
|
|
return self.desc._block_attr_id(name)
|
|
|
|
|
|
|
|
def _block_attr(self, name):
|
|
|
|
"""
|
|
|
|
Get the block attribute by name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
block: the block attribute.
|
|
|
|
"""
|
|
|
|
|
|
|
|
id = self._block_attr_id(name)
|
|
|
|
assert (id >= 0 and id < len(self.block.program.blocks))
|
|
|
|
return self.block.program.blocks[id]
|
|
|
|
|
|
|
|
def _blocks_attr(self, name):
|
|
|
|
"""
|
|
|
|
Get the blocks attribute by name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: list of the blocks attribute.
|
|
|
|
"""
|
|
|
|
attrs = []
|
|
|
|
for i in self._blocks_attr_ids(name):
|
|
|
|
assert (i >= 0 and i < len(self.block.program.blocks))
|
|
|
|
attrs.append(self.block.program.blocks[i])
|
|
|
|
|
|
|
|
return attrs
|
|
|
|
|
|
|
|
def _blocks_attr_ids(self, name):
|
|
|
|
"""
|
|
|
|
Get the blocks attribute's ids by name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the attribute name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: list of the blocks ids.
|
|
|
|
"""
|
|
|
|
|
|
|
|
return self.desc._blocks_attr_ids(name)
|
|
|
|
|
|
|
|
def all_attrs(self):
|
|
|
|
"""
|
|
|
|
Get the attribute dict.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: The Operator's attribute dict, name->attr.
|
|
|
|
"""
|
|
|
|
attr_names = self.attr_names
|
|
|
|
attr_map = {}
|
|
|
|
for n in attr_names:
|
|
|
|
attr_type = self.desc.attr_type(n)
|
|
|
|
if attr_type == core.AttrType.BLOCK:
|
|
|
|
attr_map[n] = self._block_attr(n)
|
|
|
|
continue
|
|
|
|
|
|
|
|
if attr_type == core.AttrType.BLOCKS:
|
|
|
|
attr_map[n] = self._blocks_attr(n)
|
|
|
|
continue
|
|
|
|
|
|
|
|
attr_map[n] = self.attr(n)
|
|
|
|
|
|
|
|
return attr_map
|
|
|
|
|
|
|
|
|
|
|
|
class Block(object):
|
|
|
|
"""
|
|
|
|
In Fluid, a Program is consistence of multi-Block, and Block stores
|
|
|
|
VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
|
|
|
|
One block could have some child blocks, and child block's name scopes
|
|
|
|
should inherit the parent's so that OpDesc in child block can reference
|
|
|
|
a VarDesc that is stored in the parent block.
|
|
|
|
Please reference the framework.proto for details.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
program(Program): The Program that the Block belongs to.
|
|
|
|
idx(int): The block's id in the Program.
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
The constructor of Block should not be invoked directly. Please
|
|
|
|
use `Program._create_block()` to create a block.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
cur_program = Program()
|
|
|
|
cur_block = cur_program.current_block()
|
|
|
|
var = cur_block.create_var(name="X",
|
|
|
|
shape=[-1, 23, 48],
|
|
|
|
dtype='float32')
|
|
|
|
cur_block.append_op(type="abs",
|
|
|
|
inputs={"X": [var]},
|
|
|
|
outputs={"Out": [var]})
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, program, idx):
|
|
|
|
self.desc = program.desc.block(idx)
|
|
|
|
self.vars = collections.OrderedDict() # var_name --> var
|
|
|
|
self.ops = list() # operator list
|
|
|
|
self.program = program
|
|
|
|
self.removed_vars = collections.OrderedDict()
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.to_string(True)
|
|
|
|
|
|
|
|
def to_string(self, throw_on_error, with_details=False):
|
|
|
|
"""
|
|
|
|
Get debug string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
throw_on_error(bool): raise exception when self is not initialized
|
|
|
|
when throw_on_error is True.
|
|
|
|
with_details(bool): more details about variables and parameters
|
|
|
|
(e.g. trainable, optimize_attr, ...) will be printed when
|
|
|
|
with_details is True. Default False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The debug string.
|
|
|
|
"""
|
|
|
|
assert isinstance(throw_on_error, bool) and isinstance(with_details,
|
|
|
|
bool)
|
|
|
|
if with_details:
|
|
|
|
re_add_indent = re.compile(r"\n(.)")
|
|
|
|
res_str = "blocks {\n idx: %d\n parent_idx: %d" % (
|
|
|
|
self.idx, self.parent_idx)
|
|
|
|
for var in list(self.vars.values()):
|
|
|
|
res_str += "\n vars {\n %s }" % re_add_indent.sub(
|
|
|
|
r"\n \1", var.to_string(throw_on_error, with_details))
|
|
|
|
for op in self.ops:
|
|
|
|
res_str += "\n ops {\n %s }" % re_add_indent.sub(
|
|
|
|
r"\n \1", op.to_string(throw_on_error))
|
|
|
|
res_str += "\n}"
|
|
|
|
else:
|
|
|
|
protostr = self.desc.serialize_to_string()
|
|
|
|
proto = framework_pb2.BlockDesc.FromString(
|
|
|
|
six.binary_type(protostr))
|
|
|
|
res_str = _debug_string_(proto, throw_on_error)
|
|
|
|
return res_str
|
|
|
|
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
|
|
@property
|
|
|
|
def parent_idx(self):
|
|
|
|
return self.desc.parent
|
|
|
|
|
|
|
|
@property
|
|
|
|
def forward_block_idx(self):
|
|
|
|
return self.desc.get_forward_block_idx()
|
|
|
|
|
|
|
|
def _set_forward_block_idx(self, idx):
|
|
|
|
"""
|
|
|
|
Set the forward block Idx.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
idx(int): the block index.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
self.desc._set_forward_block_idx(idx)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def idx(self):
|
|
|
|
return self.desc.id
|
|
|
|
|
|
|
|
def var(self, name):
|
|
|
|
"""
|
|
|
|
Get a Variable by name from this block.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the Variable's name.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: The If input's type is not str, or this block
|
|
|
|
doesn't have a Variable with the giving name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Variable: the Variable with the giving name.
|
|
|
|
"""
|
|
|
|
if not isinstance(name, six.string_types):
|
|
|
|
raise TypeError(
|
|
|
|
"var require string as parameter, but get %s instead." %
|
|
|
|
(type(name)))
|
|
|
|
v = self.vars.get(name, None)
|
|
|
|
if v is None:
|
|
|
|
raise ValueError("var %s not in this block" % name)
|
|
|
|
return v
|
|
|
|
|
|
|
|
def _find_var_recursive(self, name):
|
|
|
|
"""
|
|
|
|
Get a Variable by name from this block recursively.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the Variable's name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Variable: the Variable with the giving name. Or None if not found.
|
|
|
|
"""
|
|
|
|
frontier = list()
|
|
|
|
visited = set()
|
|
|
|
|
|
|
|
frontier.append(self)
|
|
|
|
|
|
|
|
prog = self.program
|
|
|
|
|
|
|
|
while len(frontier) != 0: # BFS
|
|
|
|
cur = frontier[0]
|
|
|
|
frontier = frontier[1:]
|
|
|
|
|
|
|
|
if id(cur) in visited:
|
|
|
|
continue
|
|
|
|
|
|
|
|
if cur.has_var(name):
|
|
|
|
return cur.var(name)
|
|
|
|
|
|
|
|
if cur.parent_idx != -1:
|
|
|
|
frontier.append(prog.block(cur.parent_idx))
|
|
|
|
|
|
|
|
if cur.forward_block_idx != -1:
|
|
|
|
frontier.append(prog.block(cur.forward_block_idx))
|
|
|
|
|
|
|
|
visited.add(id(cur))
|
|
|
|
return None
|
|
|
|
|
|
|
|
def _var_recursive(self, name):
|
|
|
|
"""
|
|
|
|
Get a Variable by name from this block recursively.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the Variable's name.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: this block and this parent block doesn't
|
|
|
|
have a Variable with the giving name.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Variable: the Variable with the giving name.
|
|
|
|
"""
|
|
|
|
var = self._find_var_recursive(name)
|
|
|
|
if var:
|
|
|
|
return var
|
|
|
|
else:
|
|
|
|
raise ValueError("Var {0} is not found recursively".format(name))
|
|
|
|
|
|
|
|
def all_parameters(self):
|
|
|
|
return list(self.iter_parameters())
|
|
|
|
|
|
|
|
def iter_parameters(self):
|
|
|
|
return (item[1] for item in six.iteritems(self.vars)
|
|
|
|
if isinstance(item[1], Parameter))
|
|
|
|
|
|
|
|
def create_var(self, *args, **kwargs):
|
|
|
|
var = Variable(block=self, *args, **kwargs)
|
|
|
|
if 'initializer' in kwargs:
|
|
|
|
kwargs['initializer'](var, self)
|
|
|
|
return var
|
|
|
|
|
|
|
|
def has_var(self, name):
|
|
|
|
return name in self.vars
|
|
|
|
|
|
|
|
def _rename_var(self, name, new_name):
|
|
|
|
"""
|
|
|
|
Rename variable in vars and ops' inputs and outputs
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): the name that need to be renamed.
|
|
|
|
new_name(str): the name that need to rename to.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If this block doesn't have this the giving name,
|
|
|
|
or the type of the var with the giving name is not Parameter
|
|
|
|
or Variable.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Variable: the Variable with the giving name.
|
|
|
|
"""
|
|
|
|
name = cpt.to_text(name)
|
|
|
|
new_name = cpt.to_text(new_name)
|
|
|
|
|
|
|
|
if not self.has_var(name):
|
|
|
|
raise ValueError("var %s is not in current block" % name)
|
|
|
|
v = self.var(name)
|
|
|
|
if type(v) == Parameter:
|
|
|
|
var_type = "Parameter"
|
|
|
|
stop_gradient = v.stop_gradient
|
|
|
|
trainable = v.trainable
|
|
|
|
optimize_attr = v.optimize_attr
|
|
|
|
regularizer = v.regularizer
|
|
|
|
gradient_clip_attr = v.gradient_clip_attr
|
|
|
|
error_clip = v.error_clip
|
|
|
|
elif type(v) == Variable:
|
|
|
|
var_type = "Variable"
|
|
|
|
error_clip = v.error_clip
|
|
|
|
stop_gradient = v.stop_gradient
|
|
|
|
else:
|
|
|
|
raise ValueError("unsupported var type: %s", type(v))
|
|
|
|
orig_var_type = v.type
|
|
|
|
self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
|
|
|
|
# NOTE: v is destroyed by C++ after calling _rename_var.
|
|
|
|
d = self.desc.find_var(cpt.to_bytes(new_name))
|
|
|
|
if var_type == "Parameter":
|
|
|
|
var = Parameter(
|
|
|
|
self,
|
|
|
|
d.shape(),
|
|
|
|
d.dtype(),
|
|
|
|
type=orig_var_type,
|
|
|
|
name=new_name,
|
|
|
|
stop_gradient=stop_gradient,
|
|
|
|
trainable=trainable,
|
|
|
|
optimize_attr=optimize_attr,
|
|
|
|
regularizer=regularizer,
|
|
|
|
gradient_clip_attr=gradient_clip_attr,
|
|
|
|
error_clip=error_clip)
|
|
|
|
elif var_type == "Variable":
|
|
|
|
var = Variable(
|
|
|
|
self,
|
|
|
|
type=orig_var_type,
|
|
|
|
name=new_name,
|
|
|
|
error_clip=error_clip,
|
|
|
|
stop_gradient=stop_gradient)
|
|
|
|
|
|
|
|
# rename the python side, _sync_with_cpp will only add
|
|
|
|
# new vars/ops to python side.
|
|
|
|
self.vars[new_name] = var
|
|
|
|
del self.vars[name]
|
|
|
|
self._sync_with_cpp()
|
|
|
|
return var
|
|
|
|
|
|
|
|
def _remove_var(self, name):
|
|
|
|
self._sync_with_cpp()
|
|
|
|
self.desc._remove_var(cpt.to_bytes(name))
|
|
|
|
del self.vars[name]
|
|
|
|
|
|
|
|
def create_parameter(self, *args, **kwargs):
|
|
|
|
global_block = self.program.global_block()
|
|
|
|
param = Parameter(global_block, *args, **kwargs)
|
|
|
|
if 'initializer' in kwargs:
|
|
|
|
|
|
|
|
def _is_inited_by(block, var):
|
|
|
|
init_ops = []
|
|
|
|
for op in block.ops:
|
|
|
|
if var.name in op.output_arg_names:
|
|
|
|
init_ops.append(op)
|
|
|
|
return init_ops
|
|
|
|
|
|
|
|
initializer = kwargs['initializer']
|
|
|
|
init_ops = _is_inited_by(global_block, param)
|
|
|
|
init_ops_len = len(init_ops)
|
|
|
|
if init_ops_len > 1:
|
|
|
|
raise RuntimeError("param " + param.name +
|
|
|
|
" is inited by multiple init ops " + str(
|
|
|
|
init_ops))
|
|
|
|
elif init_ops_len == 1:
|
|
|
|
#TODO already inited, do nothing, should log a warning
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
initializer(param, self)
|
|
|
|
return param
|
|
|
|
|
|
|
|
def append_op(self, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Appends a new Operator according to the giving arguments.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Operator: the append Operator.
|
|
|
|
"""
|
|
|
|
op_desc = self.desc.append_op()
|
|
|
|
op = Operator(
|
|
|
|
block=self,
|
|
|
|
desc=op_desc,
|
|
|
|
type=kwargs.get("type", None),
|
|
|
|
inputs=kwargs.get("inputs", None),
|
|
|
|
outputs=kwargs.get("outputs", None),
|
|
|
|
attrs=kwargs.get("attrs", None))
|
|
|
|
self.ops.append(op)
|
|
|
|
self._trace_op(op, kwargs.get("stop_gradient", False))
|
|
|
|
return op
|
|
|
|
|
|
|
|
def _trace_op(self, op, stop_gradient=False):
|
|
|
|
if _in_imperative_mode():
|
|
|
|
_imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
|
|
|
|
stop_gradient)
|
|
|
|
|
|
|
|
def _insert_op(self, index, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Insert a Operator according to the giving arguments.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
index(int): the place that the operator to insert.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Operator: the insert Operator.
|
|
|
|
"""
|
|
|
|
self._sync_with_cpp()
|
|
|
|
op_desc = self.desc._insert_op(index)
|
|
|
|
op = Operator(block=self, desc=op_desc, *args, **kwargs)
|
|
|
|
self.ops.insert(index, op)
|
|
|
|
return op
|
|
|
|
|
|
|
|
def _remove_op(self, index):
|
|
|
|
"""
|
|
|
|
Remove the specific position operator.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
index(int): the position that the operator to insert.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
self._sync_with_cpp()
|
|
|
|
self.desc._remove_op(index, index + 1)
|
|
|
|
del self.ops[index]
|
|
|
|
|
|
|
|
def _slice_ops(self, start, end):
|
|
|
|
"""
|
|
|
|
Return the Operator between start and end.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
start(int): the start position.
|
|
|
|
end(int): the end position.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: the Operators between start and end.
|
|
|
|
"""
|
|
|
|
return self.ops[start:end]
|
|
|
|
|
|
|
|
def _prepend_op(self, *args, **kwargs):
|
|
|
|
op_desc = self.desc._prepend_op()
|
|
|
|
op = Operator(
|
|
|
|
self,
|
|
|
|
op_desc,
|
|
|
|
type=kwargs.get("type", None),
|
|
|
|
inputs=kwargs.get("inputs", None),
|
|
|
|
outputs=kwargs.get("outputs", None),
|
|
|
|
attrs=kwargs.get("attrs", None))
|
|
|
|
self.ops.insert(0, op)
|
|
|
|
self._trace_op(op, kwargs.get("stop_gradient", False))
|
|
|
|
return op
|
|
|
|
|
|
|
|
def _sync_with_cpp(self):
|
|
|
|
"""
|
|
|
|
Sync from the desc on the c++ end. This method is used to synchronize
|
|
|
|
the c++ desc instance generated by backward.
|
|
|
|
"""
|
|
|
|
# sync variables from cpp
|
|
|
|
for var in self.desc.all_vars():
|
|
|
|
if not self.has_var(var.name()):
|
|
|
|
self.create_var(name=var.name(), desc=var, type=var.type())
|
|
|
|
|
|
|
|
# sync variables removed from c++ end
|
|
|
|
for var in list(self.vars.keys()):
|
|
|
|
if not self.desc.find_var(cpt.to_bytes(var)):
|
|
|
|
self.vars.pop(var)
|
|
|
|
|
|
|
|
# sync operators from cpp
|
|
|
|
ops_in_cpp = []
|
|
|
|
for op_idx in range(0, self.desc.op_size()):
|
|
|
|
ops_in_cpp.append(self.desc.op(op_idx))
|
|
|
|
|
|
|
|
if len(self.ops) != 0:
|
|
|
|
first_op_in_python = self.ops[0].desc
|
|
|
|
last_op_in_python = self.ops[len(self.ops) - 1].desc
|
|
|
|
start_index = None
|
|
|
|
end_index = None
|
|
|
|
for index in range(len(ops_in_cpp)):
|
|
|
|
if first_op_in_python == ops_in_cpp[index]:
|
|
|
|
start_index = index
|
|
|
|
if last_op_in_python == ops_in_cpp[index]:
|
|
|
|
end_index = index
|
|
|
|
assert start_index is not None
|
|
|
|
assert end_index is not None
|
|
|
|
assert start_index <= end_index
|
|
|
|
else:
|
|
|
|
start_index = 0
|
|
|
|
end_index = -1
|
|
|
|
|
|
|
|
# sync ops append to the head of cpp_ops
|
|
|
|
for index in range((start_index - 1 - 1), -1, -1):
|
|
|
|
op_desc = ops_in_cpp[index]
|
|
|
|
op = Operator(self, op_desc)
|
|
|
|
self.ops.insert(0, op)
|
|
|
|
|
|
|
|
# sync ops append to the end of cpp_ops
|
|
|
|
for index in range((end_index + 1), len(ops_in_cpp)):
|
|
|
|
op_desc = ops_in_cpp[index]
|
|
|
|
op = Operator(self, op_desc)
|
|
|
|
self.ops.append(op)
|
|
|
|
|
|
|
|
# sync ops removed from c++ end
|
|
|
|
if end_index != -1 and end_index < len(self.ops):
|
|
|
|
ops_in_cpp_index = 0
|
|
|
|
ops_in_python_index = 0
|
|
|
|
while ops_in_python_index < len(
|
|
|
|
self.ops) and ops_in_cpp_index < len(ops_in_cpp):
|
|
|
|
if self.ops[ops_in_python_index].desc != ops_in_cpp[
|
|
|
|
ops_in_cpp_index]:
|
|
|
|
del self.ops[ops_in_python_index]
|
|
|
|
else:
|
|
|
|
ops_in_cpp_index += 1
|
|
|
|
ops_in_python_index += 1
|
|
|
|
|
|
|
|
assert len(self.ops) == len(ops_in_cpp)
|
|
|
|
for index in range(len(self.ops)):
|
|
|
|
assert self.ops[index].desc == ops_in_cpp[index]
|
|
|
|
|
|
|
|
def _copy_param_info_from(self, other):
|
|
|
|
"""
|
|
|
|
Copy the information of parameters from the other block.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
other(Block): the other block.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If type of input is not Block, or the `other` and this
|
|
|
|
block is not in the same topology.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
if not isinstance(other, Block):
|
|
|
|
raise TypeError(
|
|
|
|
"_copy_param_info_from should be invoked with Block")
|
|
|
|
for p in other.iter_parameters():
|
|
|
|
assert isinstance(p, Parameter)
|
|
|
|
v = self.vars.get(p.name, None)
|
|
|
|
if v is None:
|
|
|
|
raise ValueError("_copy_param_info_from should be invoked with "
|
|
|
|
"same topology")
|
|
|
|
assert isinstance(v, Variable)
|
|
|
|
new_p = Parameter(
|
|
|
|
block=self,
|
|
|
|
shape=v.shape,
|
|
|
|
dtype=v.dtype,
|
|
|
|
type=v.type,
|
|
|
|
lod_level=v.lod_level,
|
|
|
|
stop_gradient=p.stop_gradient,
|
|
|
|
trainable=p.trainable,
|
|
|
|
optimize_attr=p.optimize_attr,
|
|
|
|
regularizer=p.regularizer,
|
|
|
|
gradient_clip_attr=p.gradient_clip_attr,
|
|
|
|
error_clip=p.error_clip,
|
|
|
|
name=v.name)
|
|
|
|
self.vars[new_p.name] = new_p
|
|
|
|
|
|
|
|
def _clone_variable(self, var):
|
|
|
|
"""
|
|
|
|
Clone a variable into current block.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
var: the variable to be cloned.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Variable: the new variable cloned from 'var' in current block.
|
|
|
|
"""
|
|
|
|
assert isinstance(var, Variable)
|
|
|
|
ret_var = None
|
|
|
|
# make STEP_SCOPES var can be safely cloned.
|
|
|
|
if var.type == core.VarDesc.VarType.STEP_SCOPES:
|
|
|
|
ret_var = self.create_var(
|
|
|
|
name=var.name, persistable=var.persistable, type=var.type)
|
|
|
|
elif var.type == core.VarDesc.VarType.RAW:
|
|
|
|
ret_var = self.create_var(
|
|
|
|
name=var.name, persistable=var.persistable, type=var.type)
|
|
|
|
elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
|
|
|
|
ret_var = self.create_var(
|
|
|
|
name=var.name,
|
|
|
|
shape=var.shape,
|
|
|
|
dtype=var.dtype,
|
|
|
|
type=var.type,
|
|
|
|
persistable=True,
|
|
|
|
is_data=var.is_data)
|
|
|
|
else:
|
|
|
|
ret_var = self.create_var(
|
|
|
|
name=var.name,
|
|
|
|
shape=var.shape,
|
|
|
|
dtype=var.dtype,
|
|
|
|
type=var.type,
|
|
|
|
lod_level=var.lod_level,
|
|
|
|
persistable=True,
|
|
|
|
is_data=var.is_data)
|
|
|
|
return ret_var
|
|
|
|
|
|
|
|
|
|
|
|
class Program(object):
|
|
|
|
"""
|
|
|
|
Python Program. Beneath it is a ProgramDesc, which is used for
|
|
|
|
create c++ Program. A program is a self-contained programing
|
|
|
|
language like container. It has at least one Block, when the
|
|
|
|
control flow op like conditional_block, while_op is included,
|
|
|
|
it will contains nested block.
|
|
|
|
Please reference the framework.proto for details.
|
|
|
|
|
|
|
|
Notes: we have default_startup_program and default_main_program
|
|
|
|
by default, a pair of them will shared the parameters.
|
|
|
|
The default_startup_program only run once to initialize parameters,
|
|
|
|
default_main_program run in every mini batch and adjust the weights.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A empty program.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> main_program = fluid.Program()
|
|
|
|
>>> startup_program = fluid.Program()
|
|
|
|
>>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
|
|
|
|
>>> fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
|
|
|
|
>>> fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
|
|
|
|
>>> fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
self.desc = core.ProgramDesc()
|
|
|
|
self.blocks = [Block(self, 0)]
|
|
|
|
self.current_block_idx = 0
|
|
|
|
self._seed = 0
|
|
|
|
self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
|
|
|
|
self._op_role_var = []
|
|
|
|
|
|
|
|
# for distribute
|
|
|
|
self._is_distributed = False
|
|
|
|
self._is_chief = False
|
|
|
|
self._slice_vars_and_attrs = []
|
|
|
|
self._endpoints = []
|
|
|
|
self._trainers_endpoints = []
|
|
|
|
self._distributed_lookup_table = None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def op_role(self):
|
|
|
|
"""
|
|
|
|
The operator role. In a enum {Forward, Backward, Optimize}.
|
|
|
|
|
|
|
|
Notes: this is a low level API. It is used only for ParallelExecutor to
|
|
|
|
duplicate or schedule operator to devices.
|
|
|
|
|
|
|
|
For example, the forward operator should be executed on every device.
|
|
|
|
The backward operator should be executed on every device and the
|
|
|
|
parameter gradient of backward (use :code:`op_role_var` to get this
|
|
|
|
variable) operator should be merged to one device. The optimization
|
|
|
|
operators should be executed on only one device and broadcast the
|
|
|
|
optimization result, i.e., the new parameter, to every other device.
|
|
|
|
"""
|
|
|
|
return self._current_role
|
|
|
|
|
|
|
|
@op_role.setter
|
|
|
|
def set_op_role(self, role):
|
|
|
|
self._current_role = role
|
|
|
|
|
|
|
|
@property
|
|
|
|
def op_role_var(self):
|
|
|
|
"""
|
|
|
|
The auxiliary variables for :code:`op_role` property.
|
|
|
|
|
|
|
|
See Also: :code:`Program.op_role`'s documentation for details.
|
|
|
|
|
|
|
|
Notes: This is a very low-level API. Users should not use it directly.
|
|
|
|
"""
|
|
|
|
return self._op_role_var
|
|
|
|
|
|
|
|
@op_role_var.setter
|
|
|
|
def set_op_role_var(self, var_name):
|
|
|
|
self._op_role_var = [var_name]
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def _optimized_guard(self, param_and_grads):
|
|
|
|
"""
|
|
|
|
A with guard to set :code:`Optimization` :code:`OpRole` and
|
|
|
|
:code:`OpRoleVar` automatically.
|
|
|
|
|
|
|
|
Notes: This is a very low level API. Users should not use it directly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
param_and_grads(list): The variables (names) to be optimized.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> p, g = backward(...)
|
|
|
|
>>> with program._optimized_guard([p,g]):
|
|
|
|
>>> p = p - 0.001 * g
|
|
|
|
"""
|
|
|
|
tmp_role = self._current_role
|
|
|
|
tmp_var = self._op_role_var
|
|
|
|
|
|
|
|
OpRole = core.op_proto_and_checker_maker.OpRole
|
|
|
|
self._current_role = OpRole.Optimize
|
|
|
|
self._op_role_var = [
|
|
|
|
var.name if isinstance(var, Variable) else var
|
|
|
|
for var in param_and_grads
|
|
|
|
]
|
|
|
|
yield
|
|
|
|
self._op_role_var = tmp_var
|
|
|
|
self._current_role = tmp_role
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def _lr_schedule_guard(self, is_with_opt=False):
|
|
|
|
"""
|
|
|
|
A with guard to set :code:`LRSched` :code:`OpRole` and
|
|
|
|
:code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
|
|
|
|
set to the target learning rate.
|
|
|
|
|
|
|
|
Notes: This is a very low level API. Users should not use it directly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
is_with_opt: Only set to true if these ops a in the middle
|
|
|
|
of a bunch of optimize ops so that it can be treated
|
|
|
|
correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> p, g = backward(...)
|
|
|
|
>>> with program.lr_schedule_guard():
|
|
|
|
>>> lr = lr * decay
|
|
|
|
"""
|
|
|
|
|
|
|
|
tmp_role = self._current_role
|
|
|
|
tmp_var = self._op_role_var
|
|
|
|
|
|
|
|
OpRole = core.op_proto_and_checker_maker.OpRole
|
|
|
|
self._current_role = OpRole.LRSched
|
|
|
|
if is_with_opt:
|
|
|
|
self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
|
|
|
|
# TODO(typhoonzero): how to set target learning rate var
|
|
|
|
self._op_role_var = []
|
|
|
|
yield
|
|
|
|
self._op_role_var = tmp_var
|
|
|
|
self._current_role = tmp_role
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
"""
|
|
|
|
Get the protobuf debug string of this Program.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(str): The protobuf debug string.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If any of required fields is not set.
|
|
|
|
"""
|
|
|
|
return self.to_string(True)
|
|
|
|
|
|
|
|
def to_string(self, throw_on_error, with_details=False):
|
|
|
|
"""
|
|
|
|
To debug string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
throw_on_error(bool): raise Value error when any of required fields
|
|
|
|
is not set.
|
|
|
|
|
|
|
|
with_details(bool): True if more details about variables and
|
|
|
|
parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
|
|
|
|
to print.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str : The debug string.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If any of required fields is not set and throw_on_error is
|
|
|
|
True.
|
|
|
|
|
|
|
|
"""
|
|
|
|
assert isinstance(throw_on_error, bool) and isinstance(with_details,
|
|
|
|
bool)
|
|
|
|
if with_details:
|
|
|
|
res_str = ""
|
|
|
|
for block in self.blocks:
|
|
|
|
res_str += block.to_string(throw_on_error, with_details)
|
|
|
|
else:
|
|
|
|
protostr = self.desc.serialize_to_string()
|
|
|
|
proto = framework_pb2.ProgramDesc.FromString(
|
|
|
|
six.binary_type(protostr))
|
|
|
|
res_str = _debug_string_(proto, throw_on_error)
|
|
|
|
return res_str
|
|
|
|
|
|
|
|
def _get_desc(self):
|
|
|
|
"""
|
|
|
|
Get the C++ side of `ProgramDesc` object pointer. The C++ object is
|
|
|
|
exposed by :code:`pybind`.
|
|
|
|
|
|
|
|
Notes: This is a very low level API. Users should not use this API
|
|
|
|
directly.
|
|
|
|
"""
|
|
|
|
return self.desc
|
|
|
|
|
|
|
|
def _version(self):
|
|
|
|
return self.desc._version()
|
|
|
|
|
|
|
|
def clone(self, for_test=False):
|
|
|
|
"""
|
|
|
|
Create a new, duplicated program.
|
|
|
|
|
|
|
|
|
|
|
|
Some operators, e.g., :code:`batch_norm`, behave differently between
|
|
|
|
training and testing. They have an attribute, :code:`is_test`, to
|
|
|
|
control this behaviour. This method will change the :code:`is_test`
|
|
|
|
attribute of them to :code:`True` when :code:`for_test=True`.
|
|
|
|
|
|
|
|
* Set for_test to False when we want to clone the program for training.
|
|
|
|
* Set for_test to True when we want to clone the program for testing.
|
|
|
|
|
|
|
|
Notes: This API DOES NOT prune any operator. Use
|
|
|
|
:code:`clone(for_test=True)` before backward and optimization please. e.g.
|
|
|
|
|
|
|
|
>>> test_program = fluid.default_main_program().clone(for_test=True)
|
|
|
|
>>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
|
|
|
|
>>> optimizer.minimize()
|
|
|
|
|
|
|
|
Args:
|
|
|
|
for_test(bool): True if change the :code:`is_test` attribute of
|
|
|
|
operators to :code:`True`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: The new, duplicated Program object.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
1. To clone a test program, the sample code is:
|
|
|
|
|
|
|
|
>>> import paddle.fluid as fluid
|
|
|
|
>>> train_program = fluid.Program()
|
|
|
|
>>> startup_program = fluid.Program()
|
|
|
|
>>> with fluid.program_guard(train_program, startup_program):
|
|
|
|
>>> img = fluid.layers.data(name='image', shape=[784])
|
|
|
|
>>> hidden = fluid.layers.fc(input=img, size=200, act='relu')
|
|
|
|
>>> hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
|
|
|
|
>>> loss = fluid.layers.cross_entropy(
|
|
|
|
>>> input=fluid.layers.fc(hidden, size=10, act='softmax'),
|
|
|
|
>>> label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
|
|
|
|
>>>
|
|
|
|
>>> test_program = train_program.clone(for_test=True)
|
|
|
|
>>>
|
|
|
|
>>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
|
|
|
|
>>> with fluid.program_guard(train_program, startup_program):
|
|
|
|
>>> sgd.minimize(loss)
|
|
|
|
|
|
|
|
2. The :code:`clone` method can be avoid if you create program for
|
|
|
|
training and program for testing individually.
|
|
|
|
|
|
|
|
>>> import paddle.fluid as fluid
|
|
|
|
>>>
|
|
|
|
>>> def network(is_test):
|
|
|
|
>>> img = fluid.layers.data(name='image', shape=[784])
|
|
|
|
>>> hidden = fluid.layers.fc(input=img, size=200, act='relu')
|
|
|
|
>>> hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
|
|
|
|
>>> loss = fluid.layers.cross_entropy(
|
|
|
|
>>> input=fluid.layers.fc(hidden, size=10, act='softmax'),
|
|
|
|
>>> label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
|
|
|
|
>>> return loss
|
|
|
|
>>>
|
|
|
|
>>> train_program = fluid.Program()
|
|
|
|
>>> startup_program = fluid.Program()
|
|
|
|
>>> test_program = fluid.Program()
|
|
|
|
>>>
|
|
|
|
>>> with fluid.program_guard(train_program, startup_program):
|
|
|
|
>>> with fluid.unique_name.guard():
|
|
|
|
>>> loss = network(is_test=False)
|
|
|
|
>>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
|
|
|
|
>>> sgd.minimize(loss)
|
|
|
|
>>>
|
|
|
|
>>> # the test startup program is not used.
|
|
|
|
>>> with fluid.program_guard(test_program, fluid.Program()):
|
|
|
|
>>> with fluid.unique_name.guard():
|
|
|
|
>>> loss = network(is_test=True)
|
|
|
|
|
|
|
|
The two code snippets above will generate same programs.
|
|
|
|
"""
|
|
|
|
if for_test:
|
|
|
|
p = self._inference_optimize(prune_read_op=False)
|
|
|
|
else:
|
|
|
|
p = Program()
|
|
|
|
p.current_block_idx = self.current_block_idx
|
|
|
|
p._seed = self._seed
|
|
|
|
p.desc = core.ProgramDesc(self.desc)
|
|
|
|
p.blocks = [
|
|
|
|
Block(p, i) for i in six.moves.range(self.desc.num_blocks())
|
|
|
|
]
|
|
|
|
|
|
|
|
p._current_role = self._current_role
|
|
|
|
p._op_role_var = self._op_role_var
|
|
|
|
|
|
|
|
p._sync_with_cpp()
|
|
|
|
|
|
|
|
p._copy_param_info_from(self)
|
|
|
|
p._copy_data_info_from(self)
|
|
|
|
p._copy_dist_param_info_from(self)
|
|
|
|
return p
|
|
|
|
|
|
|
|
def _prune(self, targets):
|
|
|
|
"""
|
|
|
|
Prune operators and variables which are not needed to generate
|
|
|
|
:code:`targets`.
|
|
|
|
|
|
|
|
Notes: This is a very low level API. Users should not use this API
|
|
|
|
directly. This API is in flux and not stable.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
targets(list|Variable|Operator): A list of variables or operators
|
|
|
|
need to be pruned
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: A new, pruned program.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if not isinstance(targets, list):
|
|
|
|
targets = [targets]
|
|
|
|
targets_idx = []
|
|
|
|
for t in targets:
|
|
|
|
if not isinstance(t, Operator):
|
|
|
|
if isinstance(t, Variable):
|
|
|
|
# After transpiler processing, the op that output this
|
|
|
|
# variable maybe has been changed, so t.op is not reliable
|
|
|
|
# and we need to find the current op that generate this
|
|
|
|
# variable here.
|
|
|
|
t.op = None
|
|
|
|
global_block = self.global_block()
|
|
|
|
for idx, op in enumerate(global_block.ops):
|
|
|
|
if t.name in op.output_arg_names:
|
|
|
|
t.op = op
|
|
|
|
break
|
|
|
|
|
|
|
|
t = t.op
|
|
|
|
if t is None:
|
|
|
|
raise ValueError(
|
|
|
|
"The target variable must have an "
|
|
|
|
"associated operator that generates it.")
|
|
|
|
else:
|
|
|
|
raise ValueError("All targets of prune() can only be "
|
|
|
|
"Variable or Operator.")
|
|
|
|
|
|
|
|
targets_idx.append([t.block.idx, t.idx])
|
|
|
|
res = Program()
|
|
|
|
res.desc = core.prune(self.desc, targets_idx)
|
|
|
|
res.blocks = [
|
|
|
|
Block(res, i) for i in six.moves.range(res.desc.num_blocks())
|
|
|
|
]
|
|
|
|
res._sync_with_cpp()
|
|
|
|
return res
|
|
|
|
|
|
|
|
def _inference_optimize(self, prune_read_op=True):
|
|
|
|
"""
|
|
|
|
This method will create a new program and do following adjustments on it:
|
|
|
|
1. Remove all reader variables and their creator ops if exist.
|
|
|
|
|
|
|
|
2. Remove the :code:`read_op` if exists.
|
|
|
|
|
|
|
|
3. change the :code:`is_test`
|
|
|
|
attribute of operators to :code:`True`. All the :code:`Parameter`
|
|
|
|
information will be lost.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prune_read_op(bool): remove the read ops that are added by py_reader
|
|
|
|
for cpp inference library
|
|
|
|
|
|
|
|
Notes: This API is a very low level API. Use
|
|
|
|
:code:`Program.clone(for_test=True)` instead.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: The new program.
|
|
|
|
"""
|
|
|
|
res = Program()
|
|
|
|
res.desc = core.ProgramDesc(self.desc)
|
|
|
|
|
|
|
|
# remove all readers and the read_op if exist
|
|
|
|
read_op_idx = 0
|
|
|
|
root_block = res.desc.block(0)
|
|
|
|
if prune_read_op:
|
|
|
|
while True:
|
|
|
|
if read_op_idx >= root_block.op_size() or root_block.op(
|
|
|
|
read_op_idx).type() == 'read':
|
|
|
|
break
|
|
|
|
read_op_idx += 1
|
|
|
|
if read_op_idx < root_block.op_size():
|
|
|
|
root_block._remove_op(0, read_op_idx + 1)
|
|
|
|
for var in root_block.all_vars():
|
|
|
|
if var.type() == core.VarDesc.VarType.READER:
|
|
|
|
root_block._remove_var(cpt.to_bytes(var.name()))
|
|
|
|
|
|
|
|
# change all `is_test` attributes to True
|
|
|
|
for i in six.moves.range(res.desc.num_blocks()):
|
|
|
|
block = res.desc.block(i)
|
|
|
|
for j in six.moves.range(block.op_size()):
|
|
|
|
op = block.op(j)
|
|
|
|
if op.has_attr('is_test'):
|
|
|
|
op._set_attr('is_test', True)
|
|
|
|
res.blocks = [
|
|
|
|
Block(res, i) for i in six.moves.range(res.desc.num_blocks())
|
|
|
|
]
|
|
|
|
res._sync_with_cpp()
|
|
|
|
return res
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def parse_from_string(binary_str):
|
|
|
|
"""
|
|
|
|
Deserialize a program desc from protobuf binary string.
|
|
|
|
|
|
|
|
Notes: All information about parameters will be lost after serialization
|
|
|
|
and deserialization.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
binary_str_type(str): The binary prootbuf string.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: A deserialized program desc.
|
|
|
|
"""
|
|
|
|
p = Program()
|
|
|
|
p.desc = core.ProgramDesc(binary_str)
|
|
|
|
p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
|
|
|
|
p._sync_with_cpp()
|
|
|
|
return p
|
|
|
|
|
|
|
|
@property
|
|
|
|
def random_seed(self):
|
|
|
|
"""
|
|
|
|
The default random seed for random operators in Program. Zero means get
|
|
|
|
the random seed from random device.
|
|
|
|
|
|
|
|
Notes: It must be set before the operators have been added.
|
|
|
|
"""
|
|
|
|
return self._seed
|
|
|
|
|
|
|
|
@property
|
|
|
|
def num_blocks(self):
|
|
|
|
"""
|
|
|
|
The number of blocks in this program.
|
|
|
|
"""
|
|
|
|
return self.desc.num_blocks()
|
|
|
|
|
|
|
|
@random_seed.setter
|
|
|
|
def random_seed(self, seed):
|
|
|
|
if not isinstance(seed, int):
|
|
|
|
raise ValueError("Seed must be a integer.")
|
|
|
|
self._seed = seed
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__str__()
|
|
|
|
|
|
|
|
def global_block(self):
|
|
|
|
"""
|
|
|
|
Get the first block of this program.
|
|
|
|
"""
|
|
|
|
return self.blocks[0]
|
|
|
|
|
|
|
|
def block(self, index):
|
|
|
|
"""
|
|
|
|
Get the :code:`index` block of this program
|
|
|
|
Args:
|
|
|
|
index(int): The index of block to get
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Block: The :code:`index` block
|
|
|
|
"""
|
|
|
|
return self.blocks[index]
|
|
|
|
|
|
|
|
def current_block(self):
|
|
|
|
"""
|
|
|
|
Get the current block. The :code:`current` block is the block to append
|
|
|
|
operators.
|
|
|
|
"""
|
|
|
|
return self.blocks[self.current_block_idx]
|
|
|
|
|
|
|
|
def _create_block(self, parent_idx=None):
|
|
|
|
"""
|
|
|
|
Create a new block with the :code:`parent_idx` and change the current block
|
|
|
|
to new block.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
parent_idx(int): The parent block index.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Block: The new block.
|
|
|
|
"""
|
|
|
|
new_block_idx = len(self.blocks)
|
|
|
|
parent = self.current_block() if parent_idx is None else self.block(
|
|
|
|
parent_idx)
|
|
|
|
self.desc.append_block(parent.desc)
|
|
|
|
self.current_block_idx = new_block_idx
|
|
|
|
self.blocks.append(Block(self, self.current_block_idx))
|
|
|
|
return self.current_block()
|
|
|
|
|
|
|
|
def _rollback(self):
|
|
|
|
"""
|
|
|
|
Exit a code block, i.e., roll back to the parent block.
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
self.current_block_idx = self.current_block().parent_idx
|
|
|
|
|
|
|
|
def _sync_with_cpp(self):
|
|
|
|
"""
|
|
|
|
Synchronize Python instance to its binding C++ object instance.
|
|
|
|
If the program is modified in C++ space, this method should be invoked.
|
|
|
|
|
|
|
|
Notes: This is a very low level API. Users should not invoke it
|
|
|
|
directly.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
for block_idx in range(len(self.blocks), self.desc.num_blocks()):
|
|
|
|
self.blocks.append(Block(self, block_idx))
|
|
|
|
for block in self.blocks:
|
|
|
|
block._sync_with_cpp()
|
|
|
|
|
|
|
|
def _copy_param_info_from(self, other):
|
|
|
|
"""
|
|
|
|
Copy the information of parameters from other program.
|
|
|
|
|
|
|
|
Notes: This is a very low level API. Users should not invoke it
|
|
|
|
directly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
other(Program): Other program
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
if not isinstance(other, Program):
|
|
|
|
raise TypeError("_copy_param_info_from should be invoked with "
|
|
|
|
"Program")
|
|
|
|
|
|
|
|
if len(self.blocks) != len(other.blocks):
|
|
|
|
raise ValueError("_copy_param_info_from should be invoked with two "
|
|
|
|
"program, with represent the same topology")
|
|
|
|
self.global_block()._copy_param_info_from(other.global_block())
|
|
|
|
|
|
|
|
def _copy_dist_param_info_from(self, other):
|
|
|
|
"""
|
|
|
|
Copy the information of distributed information from other program.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
other(Program): Other program
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
if not isinstance(other, Program):
|
|
|
|
raise TypeError("_copy_dist_param_info_from should be invoked with "
|
|
|
|
"Program")
|
|
|
|
self._is_distributed = other._is_distributed
|
|
|
|
self._is_chief = other._is_chief
|
|
|
|
self._slice_vars_and_attrs = other._slice_vars_and_attrs
|
|
|
|
self._endpoints = other._endpoints
|
|
|
|
self._distributed_lookup_table = other._distributed_lookup_table
|
|
|
|
|
|
|
|
def _copy_data_info_from(self, other):
|
|
|
|
"""
|
|
|
|
Copy the information of data variables from other program.
|
|
|
|
|
|
|
|
Notes: This is a very low level API. Users should not invoke it
|
|
|
|
directly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
other(Program): Other program
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
if not isinstance(other, Program):
|
|
|
|
raise TypeError("_copy_param_info_from should be invoked with "
|
|
|
|
"Program")
|
|
|
|
|
|
|
|
if len(self.blocks) != len(other.blocks):
|
|
|
|
raise ValueError("_copy_param_info_from should be invoked with two "
|
|
|
|
"program, with represent the same topology")
|
|
|
|
for var in list(other.global_block().vars.values()):
|
|
|
|
if var.is_data:
|
|
|
|
self.global_block().var(var.name).is_data = True
|
|
|
|
|
|
|
|
def list_vars(self):
|
|
|
|
"""
|
|
|
|
Get all variables from this Program. A iterable object is returned.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
iterable: The generator will yield every variable in this program.
|
|
|
|
"""
|
|
|
|
for each_block in self.blocks:
|
|
|
|
for each_var in list(each_block.vars.values()):
|
|
|
|
yield each_var
|
|
|
|
|
|
|
|
|
|
|
|
class Parameter(Variable):
|
|
|
|
"""
|
|
|
|
Parameter is derived from Variable. A parameter is a persistable
|
|
|
|
Variable, and will be updated by optimizers after each iteration.
|
|
|
|
The training of a neural network is essentially the updating of
|
|
|
|
its parameters.
|
|
|
|
|
|
|
|
Relative to a general Variable, a Parameter has several its own
|
|
|
|
member variables:
|
|
|
|
|
|
|
|
Args:
|
|
|
|
trainable(bool): True if the parameter need to be updated after
|
|
|
|
iterations.
|
|
|
|
optimize_attr(map): Parameter attributes related with optimizing.
|
|
|
|
Currently, it only contains 'learning_rate'.
|
|
|
|
Default: {'learning_rate': 1.0}
|
|
|
|
regularizer(WeightDecayRegularizer): The Regularizer which will
|
|
|
|
be applied on the parameter. Default: None
|
|
|
|
gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
|
|
|
|
which will be applied on the parameter. Default: None
|
|
|
|
do_model_average(bool): True if the model average strategy will
|
|
|
|
be applied on this parameter.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, block, shape, dtype, **kwargs):
|
|
|
|
if shape is None or dtype is None:
|
|
|
|
raise ValueError("Parameter must set shape and dtype")
|
|
|
|
if len(shape) == 0:
|
|
|
|
raise ValueError("Parameter shape cannot be empty")
|
|
|
|
|
|
|
|
for each in shape:
|
|
|
|
if each < 0:
|
|
|
|
raise ValueError("Parameter shape should not be related with "
|
|
|
|
"batch-size")
|
|
|
|
|
|
|
|
Variable.__init__(
|
|
|
|
self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
|
|
|
|
self.trainable = kwargs.get('trainable', True)
|
|
|
|
|
|
|
|
self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})
|
|
|
|
|
|
|
|
self.regularizer = kwargs.get('regularizer', None)
|
|
|
|
|
|
|
|
self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
|
|
|
|
|
|
|
|
self.do_model_average = kwargs.get('do_model_average', None)
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return self.to_string(True)
|
|
|
|
|
|
|
|
def to_string(self, throw_on_error, with_details=False):
|
|
|
|
"""
|
|
|
|
To debug string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
throw_on_error(bool): raise exception when self is not initialized
|
|
|
|
when throw_on_error is True
|
|
|
|
with_details(bool): more details about variables and parameters
|
|
|
|
(e.g. trainable, optimize_attr, ...) will be printed when with_details is True
|
|
|
|
|
|
|
|
Returns(str): The debug string.
|
|
|
|
|
|
|
|
"""
|
|
|
|
assert isinstance(throw_on_error, bool) and isinstance(with_details,
|
|
|
|
bool)
|
|
|
|
if with_details:
|
|
|
|
res_str = Variable.to_string(self, throw_on_error, True)
|
|
|
|
additional_attr = ("trainable", "optimize_attr", "regularizer",
|
|
|
|
"gradient_clip_attr", "do_model_average")
|
|
|
|
for attr_name in additional_attr:
|
|
|
|
res_str += "%s: %s\n" % (
|
|
|
|
attr_name, six.binary_type(getattr(self, attr_name)))
|
|
|
|
else:
|
|
|
|
res_str = Variable.to_string(self, throw_on_error, False)
|
|
|
|
return res_str
|
|
|
|
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
|
|
|
|
|
|
# program is a global instance.
|
|
|
|
_main_program_ = Program()
|
|
|
|
_startup_program_ = Program()
|
|
|
|
|
|
|
|
|
|
|
|
def default_startup_program():
|
|
|
|
"""
|
|
|
|
Get default/global startup program.
|
|
|
|
|
|
|
|
The layer function in :code:`fluid.layers` will create parameters, readers,
|
|
|
|
NCCL handles as global variables. The :code:`startup_program` will
|
|
|
|
initialize them by the operators in startup program. The layer function will
|
|
|
|
append these initialization operators into startup program.
|
|
|
|
|
|
|
|
This method will return the :code:`default` or the :code:`current` startup
|
|
|
|
program. Users can use :code:`fluid.program_guard` to switch program.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: startup program
|
|
|
|
"""
|
|
|
|
return _startup_program_
|
|
|
|
|
|
|
|
|
|
|
|
def default_main_program():
|
|
|
|
"""
|
|
|
|
Get default/global main program. The main program is used for training or
|
|
|
|
testing.
|
|
|
|
|
|
|
|
All layer function in :code:`fluid.layers` will append operators and
|
|
|
|
variables to the :code:`default_main_program`.
|
|
|
|
|
|
|
|
The :code:`default_main_program` is the default program in a lot of APIs.
|
|
|
|
For example, the :code:`Executor.run()` will execute the
|
|
|
|
:code:`default_main_program` when the program is not specified.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: main program
|
|
|
|
"""
|
|
|
|
return _main_program_
|
|
|
|
|
|
|
|
|
|
|
|
def switch_main_program(program):
|
|
|
|
"""
|
|
|
|
Switch the main program to a new program.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
program(Program): The new main program
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: The previous main program
|
|
|
|
"""
|
|
|
|
global _main_program_
|
|
|
|
prev_program = _main_program_
|
|
|
|
_main_program_ = program
|
|
|
|
return prev_program
|
|
|
|
|
|
|
|
|
|
|
|
def switch_startup_program(program):
|
|
|
|
"""
|
|
|
|
Switch the startup program to a new program
|
|
|
|
Args:
|
|
|
|
program(Program): The new startup program
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Program: The previous startup program
|
|
|
|
"""
|
|
|
|
global _startup_program_
|
|
|
|
prev_program = _startup_program_
|
|
|
|
_startup_program_ = program
|
|
|
|
return prev_program
|
|
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def program_guard(main_program, startup_program=None):
|
|
|
|
"""
|
|
|
|
Change the global main program and startup program with `with` statement.
|
|
|
|
Layer functions in the Python `with` block will append operators and
|
|
|
|
variables to the new main programs.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> import paddle.fluid as fluid
|
|
|
|
>>> main_program = fluid.Program()
|
|
|
|
>>> startup_program = fluid.Program()
|
|
|
|
>>> with fluid.program_guard(main_program, startup_program):
|
|
|
|
>>> data = fluid.layers.data(...)
|
|
|
|
>>> hidden = fluid.layers.fc(...)
|
|
|
|
|
|
|
|
Notes: The temporary :code:`Program` can be used if the user does not need
|
|
|
|
to construct either of startup program or main program.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> import paddle.fluid as fluid
|
|
|
|
>>> main_program = fluid.Program()
|
|
|
|
>>> # does not care about startup program. Just pass a temporary value.
|
|
|
|
>>> with fluid.program_guard(main_program, fluid.Program()):
|
|
|
|
>>> data = ...
|
|
|
|
|
|
|
|
Args:
|
|
|
|
main_program(Program): New main program inside `with` statement.
|
|
|
|
startup_program(Program): New startup program inside `with` statement.
|
|
|
|
None means do not change startup program.
|
|
|
|
"""
|
|
|
|
if not isinstance(main_program, Program):
|
|
|
|
raise TypeError("main_program should be Program")
|
|
|
|
main_program = switch_main_program(main_program)
|
|
|
|
if startup_program is not None:
|
|
|
|
if not isinstance(startup_program, Program):
|
|
|
|
raise TypeError("startup_program should be Program")
|
|
|
|
startup_program = switch_startup_program(startup_program)
|
|
|
|
yield
|
|
|
|
switch_main_program(main_program)
|
|
|
|
if startup_program is not None:
|
|
|
|
switch_startup_program(startup_program)
|
|
|
|
|
|
|
|
|
|
|
|
def _get_var(name, program=None):
|
|
|
|
"""
|
|
|
|
Get a variable by name from the global block of a program.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name(str): name of the variable
|
|
|
|
program(Program|None): program object.
|
|
|
|
If None, default_global_program() will be used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Variable
|
|
|
|
"""
|
|
|
|
if program is None:
|
|
|
|
program = default_main_program()
|
|
|
|
assert isinstance(name, str)
|
|
|
|
assert isinstance(program, Program)
|
|
|
|
|
|
|
|
return program.global_block().var(name)
|
|
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def _imperative_guard(tracer):
|
|
|
|
global _imperative_tracer_
|
|
|
|
tmp_trace = _imperative_tracer_
|
|
|
|
_imperative_tracer_ = tracer
|
|
|
|
yield
|
|
|
|
_imperative_tracer_ = tmp_trace
|