|
|
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
from .. import unique_name
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay',
|
|
|
|
'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay'
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class LearningRateDecay(object):
|
|
|
|
"""
|
|
|
|
Base class of learning rate decay
|
|
|
|
|
|
|
|
Define the common interface of an LearningRateDecay.
|
|
|
|
User should not use this class directly,
|
|
|
|
but need to use one of it's implementation.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, begin=0, step=1, dtype='float32'):
|
|
|
|
self.step_num = begin
|
|
|
|
self.step_size = step
|
|
|
|
self.dtype = dtype
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
lr = self.step()
|
|
|
|
if isinstance(lr, float):
|
|
|
|
lr = self.create_lr_var(lr)
|
|
|
|
self.step_num += self.step_size
|
|
|
|
return lr
|
|
|
|
|
|
|
|
def create_lr_var(self, lr):
|
|
|
|
"""
|
|
|
|
convert lr from float to variable
|
|
|
|
|
|
|
|
Args:
|
|
|
|
lr: learning rate
|
|
|
|
Returns:
|
|
|
|
learning rate variable
|
|
|
|
"""
|
|
|
|
from .. import layers
|
|
|
|
lr = layers.create_global_var(
|
|
|
|
name=unique_name.generate("learning_rate"),
|
|
|
|
shape=[1],
|
|
|
|
value=float(lr),
|
|
|
|
dtype=self.dtype,
|
|
|
|
persistable=True)
|
|
|
|
return lr
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
|
|
class PiecewiseDecay(LearningRateDecay):
|
|
|
|
"""
|
|
|
|
piecewise decay scheduler
|
|
|
|
|
|
|
|
The algorithm can be described as the code below.
|
|
|
|
|
|
|
|
.. code-block:: text
|
|
|
|
|
|
|
|
boundaries = [10000, 20000]
|
|
|
|
values = [1.0, 0.5, 0.1]
|
|
|
|
if step < 10000:
|
|
|
|
learning_rate = 1.0
|
|
|
|
elif 10000 <= step < 20000:
|
|
|
|
learning_rate = 0.5
|
|
|
|
else:
|
|
|
|
learning_rate = 0.1
|
|
|
|
Args:
|
|
|
|
boundaries: A list of steps numbers.
|
|
|
|
values: A list of learning rate values that will be picked during
|
|
|
|
different step boundaries.
|
|
|
|
begin: The begin step to initilize the self.step_num
|
|
|
|
step: The step_size using when calculate the new step_num (Defalult is 1)
|
|
|
|
dtype: The dtype used to create the learning rate variable
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
boundaries = [10000, 20000]
|
|
|
|
values = [1.0, 0.5, 0.1]
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0) )
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
|
|
|
|
super(PiecewiseDecay, self).__init__(begin, step, dtype)
|
|
|
|
self.boundaries = boundaries
|
|
|
|
self.values = values
|
|
|
|
|
|
|
|
self.vars = []
|
|
|
|
for value in values:
|
Add optimizer save and load (#16986)
* save optimizer related vars in dygraph
* test=develop, add optimizer save and load
* test=develop, add optimizer save and load
* test=develop, merge code and add multi-optimizer save and load
* test=develop, fix test_imperative_checkpoint
* test=develop, fix include error
* test=develop, fix include error
* test=develop, renew api spec
* test=develop, refine code
* test=develop, set default value for checkpoint
* test=develop, fix ci error
* test=develop, change API.spec and make api more readable
* test=develop, refine version and time stamp
* test=develop, add example code and refine code
* test=develop, refine doc
* test=develop, change version
6 years ago
|
|
|
self.vars.append(value)
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
for i in range(len(self.boundaries)):
|
|
|
|
if self.step_num < self.boundaries[i]:
|
|
|
|
return self.vars[i]
|
Add optimizer save and load (#16986)
* save optimizer related vars in dygraph
* test=develop, add optimizer save and load
* test=develop, add optimizer save and load
* test=develop, merge code and add multi-optimizer save and load
* test=develop, fix test_imperative_checkpoint
* test=develop, fix include error
* test=develop, fix include error
* test=develop, renew api spec
* test=develop, refine code
* test=develop, set default value for checkpoint
* test=develop, fix ci error
* test=develop, change API.spec and make api more readable
* test=develop, refine version and time stamp
* test=develop, add example code and refine code
* test=develop, refine doc
* test=develop, change version
6 years ago
|
|
|
return self.create_lr_var(self.vars[len(self.values) - 1])
|
|
|
|
|
|
|
|
|
|
|
|
class NaturalExpDecay(LearningRateDecay):
|
|
|
|
"""
|
|
|
|
Applies natural exponential decay to the initial learning rate.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
if not staircase:
|
|
|
|
decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
|
|
|
|
else:
|
|
|
|
decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
|
|
|
|
|
|
|
|
Args:
|
|
|
|
learning_rate: A scalar float32 value or a Variable. This
|
|
|
|
will be the initial learning rate during training
|
|
|
|
decay_steps: A Python `int32` number.
|
|
|
|
decay_rate: A Python `float` number.
|
|
|
|
staircase: Boolean. If set true, decay the learning rate every decay_steps.
|
|
|
|
begin: A Python 'int32' number, the begin step (Default is 0)
|
|
|
|
step: A Python 'int32' number, the step size (Default is 1)
|
|
|
|
dtype: A Python 'str', the dtype used to create learning rate variable (Default is 'float32')
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
base_lr = 0.1
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate=fluid.dygraph.NaturalExpDecay(
|
|
|
|
learning_rate=base_lr,
|
|
|
|
decay_steps=10000,
|
|
|
|
decay_rate=0.5,
|
|
|
|
staircase=True))
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
decay_steps,
|
|
|
|
decay_rate,
|
|
|
|
staircase=False,
|
|
|
|
begin=0,
|
|
|
|
step=1,
|
|
|
|
dtype='float32'):
|
|
|
|
super(NaturalExpDecay, self).__init__(begin, step, dtype)
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.decay_steps = decay_steps
|
|
|
|
self.decay_rate = decay_rate
|
|
|
|
self.staircase = staircase
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
from .. import layers
|
|
|
|
div_res = self.create_lr_var(self.step_num / self.decay_steps)
|
|
|
|
if self.staircase:
|
|
|
|
div_res = layers.floor(div_res)
|
|
|
|
decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate *
|
|
|
|
div_res)
|
|
|
|
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
class ExponentialDecay(LearningRateDecay):
|
|
|
|
"""
|
|
|
|
Applies exponential decay to the learning rate.
|
|
|
|
|
|
|
|
When training a model, it is often recommended to lower the learning rate as the
|
|
|
|
training progresses. By using this function, the learning rate will be decayed by
|
|
|
|
'decay_rate' every 'decay_steps' steps.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
if staircase == True:
|
|
|
|
decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
|
|
|
|
else:
|
|
|
|
decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
learning_rate(Variable|float): The initial learning rate.
|
|
|
|
decay_steps(int): See the decay computation above.
|
|
|
|
decay_rate(float): The decay rate. See the decay computation above.
|
|
|
|
staircase(Boolean): If True, decay the learning rate at discrete intervals.
|
|
|
|
Default: False
|
|
|
|
begin(int): The begin step (default is 0)
|
|
|
|
step(int): The step size (default is 1)
|
|
|
|
dtype(str): The dtype used to create learning rate (default is 'float32')
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
base_lr = 0.1
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate=fluid.dygraph.ExponentialDecay(
|
|
|
|
learning_rate=base_lr,
|
|
|
|
decay_steps=10000,
|
|
|
|
decay_rate=0.5,
|
|
|
|
staircase=True))
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
decay_steps,
|
|
|
|
decay_rate,
|
|
|
|
staircase=False,
|
|
|
|
begin=0,
|
|
|
|
step=1,
|
|
|
|
dtype='float32'):
|
|
|
|
super(ExponentialDecay, self).__init__(begin, step, dtype)
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.decay_steps = decay_steps
|
|
|
|
self.decay_rate = decay_rate
|
|
|
|
self.staircase = staircase
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
from .. import layers
|
|
|
|
div_res = self.create_lr_var(self.step_num / self.decay_steps)
|
|
|
|
if self.staircase:
|
|
|
|
div_res = layers.floor(div_res)
|
|
|
|
|
|
|
|
decayed_lr = self.learning_rate * (self.decay_rate**div_res)
|
|
|
|
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
class InverseTimeDecay(LearningRateDecay):
|
|
|
|
"""
|
|
|
|
Applies inverse time decay to the initial learning rate.
|
|
|
|
|
|
|
|
When training a model, it is often recommended to lower the learning rate as the
|
|
|
|
training progresses. By using this function, an inverse decay function will be
|
|
|
|
applied to the initial learning rate.
|
|
|
|
|
|
|
|
>>> if staircase == True:
|
|
|
|
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
|
|
|
|
>>> else:
|
|
|
|
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
learning_rate(Variable|float): The initial learning rate.
|
|
|
|
decay_steps(int): See the decay computation above.
|
|
|
|
decay_rate(float): The decay rate. See the decay computation above.
|
|
|
|
staircase(Boolean): If True, decay the learning rate at discrete intervals.
|
|
|
|
Default: False
|
|
|
|
begin(int): The begin step (default is 0)
|
|
|
|
step(int): The step size (default is 1)
|
|
|
|
dtype(str): The dtype used to create learning rate (default is 'float32')
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
base_lr = 0.1
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate=fluid.dygraph.InverseTimeDecay(
|
|
|
|
learning_rate=base_lr,
|
|
|
|
decay_steps=10000,
|
|
|
|
decay_rate=0.5,
|
|
|
|
staircase=True))
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
decay_steps,
|
|
|
|
decay_rate,
|
|
|
|
staircase=False,
|
|
|
|
begin=0,
|
|
|
|
step=1,
|
|
|
|
dtype='float32'):
|
|
|
|
super(InverseTimeDecay, self).__init__(begin, step, dtype)
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.decay_steps = decay_steps
|
|
|
|
self.decay_rate = decay_rate
|
|
|
|
self.staircase = staircase
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
from .. import layers
|
|
|
|
div_res = self.create_lr_var(self.step_num / self.decay_steps)
|
|
|
|
if self.staircase:
|
|
|
|
div_res = layers.floor(div_res)
|
|
|
|
|
|
|
|
decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)
|
|
|
|
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
class PolynomialDecay(LearningRateDecay):
|
|
|
|
"""
|
|
|
|
Applies polynomial decay to the initial learning rate.
|
|
|
|
|
|
|
|
.. code-block:: text
|
|
|
|
|
|
|
|
if cycle:
|
|
|
|
decay_steps = decay_steps * ceil(global_step / decay_steps)
|
|
|
|
else:
|
|
|
|
global_step = min(global_step, decay_steps)
|
|
|
|
decayed_learning_rate = (learning_rate - end_learning_rate) *
|
|
|
|
(1 - global_step / decay_steps) ^ power + end_learning_rate
|
|
|
|
|
|
|
|
Args:
|
|
|
|
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
|
|
|
|
will be the initial learning rate during training.
|
|
|
|
decay_steps(int32): A Python `int32` number.
|
|
|
|
end_learning_rate(float): A Python `float` number.
|
|
|
|
power(float): A Python `float` number.
|
|
|
|
cycle(bool): If set true, decay the learning rate every decay_steps.
|
|
|
|
begin(int): The begin step (default is 0)
|
|
|
|
step(int): The step size (default is 1)
|
|
|
|
dtype(str): The dtype used to create learning rate (default is 'float32')
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
start_lr = 0.01
|
|
|
|
total_step = 5000
|
|
|
|
end_lr = 0
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate = fluid.dygraph.PolynomialDecay(
|
|
|
|
start_lr, total_step, end_lr, power=1.0) )
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
decay_steps,
|
|
|
|
end_learning_rate=0.0001,
|
|
|
|
power=1.0,
|
|
|
|
cycle=False,
|
|
|
|
begin=0,
|
|
|
|
step=1,
|
|
|
|
dtype='float32'):
|
|
|
|
super(PolynomialDecay, self).__init__(begin, step, dtype)
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.decay_steps = decay_steps
|
|
|
|
self.end_learning_rate = end_learning_rate
|
|
|
|
self.power = power
|
|
|
|
self.cycle = cycle
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
from .. import layers
|
|
|
|
tmp_step_num = self.step_num
|
|
|
|
tmp_decay_steps = self.decay_steps
|
|
|
|
if self.cycle:
|
|
|
|
div_res = layers.ceil(
|
|
|
|
self.create_lr_var(tmp_step_num / float(self.decay_steps)))
|
|
|
|
|
|
|
|
if tmp_step_num == 0:
|
|
|
|
div_res = self.create_lr_var(1.0)
|
|
|
|
tmp_decay_steps = self.decay_steps * div_res
|
|
|
|
else:
|
|
|
|
tmp_step_num = self.create_lr_var(tmp_step_num
|
|
|
|
if tmp_step_num < self.decay_steps
|
|
|
|
else self.decay_steps)
|
|
|
|
|
|
|
|
decayed_lr = (self.learning_rate - self.end_learning_rate) * \
|
|
|
|
((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
class CosineDecay(LearningRateDecay):
|
|
|
|
"""
|
|
|
|
Applies cosine decay to the learning rate.
|
|
|
|
|
|
|
|
when training a model, it is often recommended to lower the learning rate as the
|
|
|
|
training progresses. By using this function, the learning rate will be decayed by
|
|
|
|
following cosine decay strategy.
|
|
|
|
|
|
|
|
.. math::
|
|
|
|
|
|
|
|
decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
learning_rate(Variable|float): The initial learning rate.
|
|
|
|
step_each_epoch(int): the number of steps in an epoch.
|
|
|
|
epochs(int): the number of epochs.
|
|
|
|
begin(int): The begin step (default is 0).
|
|
|
|
step(int): The step size (default is 1).
|
|
|
|
dtype(str): The dtype used to create learning rate (default is 'float32').
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
base_lr = 0.1
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate = fluid.dygraph.CosineDecay(
|
|
|
|
base_lr, 10000, 120) )
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
step_each_epoch,
|
|
|
|
epochs,
|
|
|
|
begin=0,
|
|
|
|
step=1,
|
|
|
|
dtype='float32'):
|
|
|
|
super(CosineDecay, self).__init__(begin, step, dtype)
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.step_each_epoch = step_each_epoch
|
|
|
|
self.epochs = epochs
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
from .. import layers
|
|
|
|
cur_epoch = layers.floor(
|
|
|
|
self.create_lr_var(self.step_num / self.step_each_epoch))
|
|
|
|
decayed_lr = self.learning_rate * 0.5 * (
|
|
|
|
layers.cos(cur_epoch * math.pi / self.epochs) + 1)
|
|
|
|
return decayed_lr
|
|
|
|
|
|
|
|
|
|
|
|
class NoamDecay(LearningRateDecay):
|
|
|
|
"""
|
|
|
|
Noam decay method. The numpy implementation of noam decay as follows.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
# set hyper parameters
|
|
|
|
d_model = 2
|
|
|
|
current_steps = 20
|
|
|
|
warmup_steps = 200
|
|
|
|
# compute
|
|
|
|
lr_value = np.power(d_model, -0.5) * np.min([
|
|
|
|
np.power(current_steps, -0.5),
|
|
|
|
np.power(warmup_steps, -1.5) * current_steps])
|
|
|
|
|
|
|
|
Please reference `attention is all you need
|
|
|
|
<https://arxiv.org/pdf/1706.03762.pdf>`_.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
d_model(Variable): The dimensionality of input and output of model.
|
|
|
|
|
|
|
|
warmup_steps(Variable): A super parameter.
|
|
|
|
begin(int): The begin step (default is 0)
|
|
|
|
step(int): The step size (default is 1)
|
|
|
|
dtype(str): The dtype used to create learning rate (default is 'float32')
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
warmup_steps = 100
|
|
|
|
learning_rate = 0.01
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate = fluid.dygraph.NoamDecay(
|
|
|
|
1/(warmup_steps *(learning_rate ** 2)),
|
|
|
|
warmup_steps) )
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, d_model, warmup_steps, begin=1, step=1, dtype='float32'):
|
|
|
|
super(NoamDecay, self).__init__(begin, step, dtype)
|
|
|
|
self.d_model = d_model
|
|
|
|
self.warmup_steps = warmup_steps
|
|
|
|
|
|
|
|
def step(self):
|
|
|
|
from .. import layers
|
|
|
|
a = self.create_lr_var(self.step_num**-0.5)
|
|
|
|
b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
|
|
|
|
lr_value = (self.d_model**-0.5) * layers.elementwise_min(a, b)
|
|
|
|
return lr_value
|