You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/distributed/downpour.py

169 lines
7.6 KiB

6 years ago
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from .node import DownpourServer
from .node import DownpourWorker
from ..backward import append_backward
import ps_pb2 as pslib
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_inputs
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_outputs
from google.protobuf import text_format
class DownpourSGD(object):
"""
Distributed optimizer of downpour stochastic gradient descent
Standard implementation of Google's Downpour SGD
in Large Scale Distributed Deep Networks
Args:
learning_rate (float): the learning rate used to update parameters. \
Can be a float value
Examples:
.. code-block:: python
opt = fluid.DistributedOptimizer(sgd_opt)
opt.minimize()
downpour_sgd = fluid.distributed.DownpourSGD(learning_rate=0.2)
downpour_sgd.minimize(cost)
"""
def __init__(self, learning_rate=0.001, window=1):
# todo(guru4elephant): add more optimizers here as argument
# todo(guru4elephant): make learning_rate as a variable
self.learning_rate_ = learning_rate
self.window_ = window
self.type = "downpour"
self.data_norm_name = [
".batch_size", ".batch_square_sum", ".batch_sum",
".batch_size@GRAD", ".batch_square_sum@GRAD", ".batch_sum@GRAD"
]
def minimize(self,
losses,
startup_program=None,
parameter_list=None,
no_grad_set=None):
"""
DownpounSGD is a distributed optimizer so
that user can call minimize to generate backward
operators and optimization operators within minimize function
Args:
loss(Variable): loss variable defined by user
startup_program(Program): startup program that defined by user
parameter_list(str list): parameter names defined by users
no_grad_set(set): a set of variables that is defined by users
so that these variables do not need gradient computation
Returns:
[ps_param, worker_skipped_ops]
ps_param: parameter server protobuf desc
worker_skipped_ops: operator names that need
to be skipped during execution
"""
if not isinstance(losses, list):
raise ValueError('losses is a list, just lick [model.cost]')
table_name = find_distributed_lookup_table(losses[0].block.program)
prefetch_slots = find_distributed_lookup_table_inputs(
losses[0].block.program, table_name)
prefetch_slots_emb = find_distributed_lookup_table_outputs(
losses[0].block.program, table_name)
ps_param = pslib.PSParameter()
server = DownpourServer()
worker = DownpourWorker(self.window_)
sparse_table_index = 0
server.add_sparse_table(sparse_table_index, self.learning_rate_,
prefetch_slots, prefetch_slots_emb)
worker.add_sparse_table(sparse_table_index, self.learning_rate_,
prefetch_slots, prefetch_slots_emb)
dense_table_index = 1
program_configs = []
param_grads_list = []
for loss_index in range(len(losses)):
program_config = ps_param.trainer_param.program_config.add()
program_config.program_id = str(
id(losses[loss_index].block.program))
program_config.pull_sparse_table_id.extend([sparse_table_index])
program_config.push_sparse_table_id.extend([sparse_table_index])
params_grads = sorted(
append_backward(losses[loss_index], parameter_list,
no_grad_set),
key=lambda x: x[0].name)
param_grads_list.append(params_grads)
params = []
grads = []
data_norm_params = []
data_norm_grads = []
for i in params_grads:
is_data_norm_data = False
for data_norm_name in self.data_norm_name:
if i[0].name.endswith(data_norm_name):
is_data_norm_data = True
data_norm_params.append(i[0])
if not is_data_norm_data:
params.append(i[0])
for i in params_grads:
is_data_norm_data = False
for data_norm_grad in self.data_norm_name:
if i[0].name.endswith(data_norm_grad):
is_data_norm_data = True
data_norm_grads.append(i[1])
if not is_data_norm_data:
grads.append(i[1])
server.add_dense_table(dense_table_index, self.learning_rate_,
params, grads)
worker.add_dense_table(dense_table_index, self.learning_rate_,
params, grads)
program_config.pull_dense_table_id.extend([dense_table_index])
program_config.push_dense_table_id.extend([dense_table_index])
if len(data_norm_params) != 0 and len(data_norm_grads) != 0:
dense_table_index += 1
server.add_data_norm_table(dense_table_index,
self.learning_rate_,
data_norm_params, data_norm_grads)
worker.add_dense_table(dense_table_index, self.learning_rate_,
data_norm_params, data_norm_grads)
program_config.pull_dense_table_id.extend([dense_table_index])
program_config.push_dense_table_id.extend([dense_table_index])
dense_table_index += 1
program_configs.append(program_config)
ps_param.server_param.CopyFrom(server.get_desc())
ps_param.trainer_param.CopyFrom(worker.get_desc())
for program_config in program_configs:
ps_param.trainer_param.program_config.extend([program_config])
# Todo(guru4elephant): figure out how to support more sparse parameters
# currently only support lookup_table
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
6 years ago
ps_param.trainer_param.skip_op.extend(worker_skipped_ops)
# all fleet operations should be defined in operators in the future
# we want to return an object here containing:
# 1) worker execution strategy
# 2) pserver execution strategy
# 3) fleet configurations
# 4) skipped operators in runtime
# 5) distributed optimization
opt_info = {}
opt_info["trainer"] = "DistMultiTrainer"
opt_info["device_worker"] = "DownpourSGD"
opt_info["optimizer"] = "DownpourSGD"
opt_info["fleet_desc"] = ps_param
opt_info["worker_skipped_ops"] = worker_skipped_ops
for loss in losses:
loss.block.program._fleet_opt = opt_info
return None, param_grads_list