You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/learning_rate_scheduler.py

548 lines
20 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
7 years ago
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
from __future__ import print_function
import math
import numbers
from . import control_flow
from . import nn
from . import ops
from . import tensor
from ..initializer import init_on_cpu
from ..framework import default_main_program, Parameter, unique_name, name_scope
from ..framework import Variable
from ..framework import in_dygraph_mode
from ..dygraph import learning_rate_scheduler as imperate_lr
__all__ = [
'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
'polynomial_decay', 'piecewise_decay', 'noam_decay', 'cosine_decay',
'linear_lr_warmup'
]
def _decay_step_counter(begin=0):
# the first global step is zero in learning rate decay
global_step = nn.autoincreased_step_counter(
counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
global_step = tensor.cast(global_step, 'float32')
return global_step
def noam_decay(d_model, warmup_steps):
7 years ago
"""
Noam decay method. The numpy implementation of noam decay as follows.
.. code-block:: python
import padde.fluid as fluid
import numpy as np
# set hyper parameters
d_model = 2
current_steps = 20
warmup_steps = 200
# compute
lr_value = np.power(d_model, -0.5) * np.min([
np.power(current_steps, -0.5),
np.power(warmup_steps, -1.5) * current_steps])
7 years ago
Please reference `attention is all you need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Args:
d_model(Variable): The dimensionality of input and output of model.
7 years ago
warmup_steps(Variable): A super parameter.
Returns:
The decayed learning rate.
Examples:
.. code-block:: python
import padde.fluid as fluid
warmup_steps = 100
learning_rate = 0.01
lr = fluid.layers.learning_rate_scheduler.noam_decay(
1/(warmup_steps *(learning_rate ** 2)),
warmup_steps)
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.NoamDecay(d_model, warmup_steps)
return decay
else:
global_step = _decay_step_counter(1)
a = global_step**-0.5
b = (warmup_steps**-1.5) * global_step
lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
return lr_value
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
7 years ago
"""
Applies exponential decay to the learning rate.
7 years ago
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
7 years ago
'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
7 years ago
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
>>> else:
>>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Args:
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` every
`decay_steps`. If False, learning rate will be decayed continuously
and following the formula above. Default: False
Returns:
Variable: The decayed learning rate. The data type is float32.
7 years ago
Examples:
.. code-block:: python
import paddle.fluid as fluid
7 years ago
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
7 years ago
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.ExponentialDecay(learning_rate, decay_steps,
decay_rate, staircase)
return decay
else:
global_step = _decay_step_counter()
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate * (decay_rate**div_res)
return decayed_lr
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""Applies natural exponential decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
natural exponential power 'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
>>> if not staircase:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
>>> else:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Args:
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by natual exponential power
`decay_rate` every `decay_steps`. If False, learning rate will be
decayed continuously and following the formula above. Default: False
Returns:
The decayed learning rate. The data type is float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.natural_exp_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.NaturalExpDecay(learning_rate, decay_steps,
decay_rate, staircase)
return decay
else:
global_step = _decay_step_counter()
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
return decayed_lr
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
7 years ago
"""
Applies inverse time decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, an inverse decay function will be
7 years ago
applied to the initial learning rate.
Decayed learning rate calcualtes as follows:
7 years ago
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args:
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` times
every `decay_steps`. If False, learning rate will be decayed
continuously and following the formula above. Default: False
Returns:
Variable: The decayed learning rate. The data type is float32.
7 years ago
Examples:
.. code-block:: python
import paddle.fluid as fluid
7 years ago
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.inverse_time_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.InverseTimeDecay(learning_rate, decay_steps,
decay_rate, staircase)
return decay
else:
global_step = _decay_step_counter()
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate / (1 + decay_rate * div_res)
return decayed_lr
def polynomial_decay(learning_rate,
decay_steps,
end_learning_rate=0.0001,
power=1.0,
cycle=False):
"""
Applies polynomial decay to the initial learning rate.
.. code-block:: text
if cycle:
decay_steps = decay_steps * ceil(global_step / decay_steps)
else:
global_step = min(global_step, decay_steps)
decayed_learning_rate = (learning_rate - end_learning_rate) *
(1 - global_step / decay_steps) ^ power + end_learning_rate
Args:
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
7 years ago
will be the initial learning rate during training.
decay_steps(int32): A Python `int32` number.
7 years ago
end_learning_rate(float): A Python `float` number.
power(float): A Python `float` number.
cycle(bool): If set true, decay the learning rate every decay_steps.
Returns:
7 years ago
Variable: The decayed learning rate
Examples:
.. code-block:: python
import paddle.fluid as fluid
start_lr = 0.01
total_step = 5000
end_lr = 0
lr = fluid.layers.polynomial_decay(
start_lr, total_step, end_lr, power=1)
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.PolynomialDecay(learning_rate, decay_steps,
end_learning_rate, power, cycle)
return decay
else:
global_step = _decay_step_counter()
if cycle:
div_res = ops.ceil(global_step / decay_steps)
zero_var = tensor.fill_constant(
shape=[1], dtype='float32', value=0.0)
one_var = tensor.fill_constant(
shape=[1], dtype='float32', value=1.0)
with control_flow.Switch() as switch:
with switch.case(global_step == zero_var):
tensor.assign(input=one_var, output=div_res)
decay_steps = decay_steps * div_res
else:
decay_steps_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(decay_steps))
global_step = nn.elementwise_min(
x=global_step, y=decay_steps_var)
decayed_lr = (learning_rate - end_learning_rate) * \
((1 - global_step / decay_steps) ** power) + end_learning_rate
return decayed_lr
def piecewise_decay(boundaries, values):
"""Applies piecewise decay to the initial learning rate.
The algorithm can be described as the code below.
7 years ago
.. code-block:: text
7 years ago
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
if step < 10000:
learning_rate = 1.0
elif 10000 <= step < 20000:
learning_rate = 0.5
else:
learning_rate = 0.1
7 years ago
Args:
boundaries: A list of steps numbers.
values: A list of learning rate values that will be picked during
different step boundaries.
Returns:
The decayed learning rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
optimizer = fluid.optimizer.Momentum(
momentum=0.9,
learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
regularization=fluid.regularizer.L2Decay(1e-4))
7 years ago
"""
with default_main_program()._lr_schedule_guard():
if len(values) - len(boundaries) != 1:
raise ValueError("len(values) - len(boundaries) should be 1")
if in_dygraph_mode():
decay = imperate_lr.PiecewiseDecay(boundaries, values, 0)
return decay
else:
global_step = _decay_step_counter()
lr = tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
with control_flow.Switch() as switch:
for i in range(len(boundaries)):
boundary_val = tensor.fill_constant(
shape=[1],
dtype='float32',
value=float(boundaries[i]),
force_cpu=True)
value_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(values[i]))
with switch.case(global_step < boundary_val):
tensor.assign(value_var, lr)
last_value_var = tensor.fill_constant(
shape=[1],
dtype='float32',
value=float(values[len(values) - 1]))
with switch.default():
tensor.assign(last_value_var, lr)
return lr
def cosine_decay(learning_rate, step_each_epoch, epochs):
"""
Applies cosine decay to the learning rate.
when training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
following cosine decay strategy.
.. math::
decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch * \\frac{math.pi}{epochs} ) + 1)
Args:
learning_rate(Variable|float): The initial learning rate.
step_each_epoch(int): the number of steps in an epoch.
epochs(int): the number of epochs.
Returns:
Variable: The decayed learning rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
base_lr = 0.1
lr = fluid.layers.cosine_decay(
learning_rate = base_lr, step_each_epoch=10000, epochs=120)
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.CosineDecay(learning_rate, step_each_epoch,
epochs)
return decay
else:
global_step = _decay_step_counter()
cur_epoch = ops.floor(global_step / step_each_epoch)
decayed_lr = learning_rate * 0.5 * (
ops.cos(cur_epoch * math.pi / epochs) + 1)
return decayed_lr
def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
"""
This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
When global_step < warmup_steps, learning rate is updated as:
.. code-block:: text
linear_step = end_lr - start_lr
lr = start_lr + linear_step * (global_step / warmup_steps)
where start_lr is the initial learning rate, and end_lr is the final learning rate;
When global_step >= warmup_steps, learning rate is updated as:
.. code-block:: text
lr = learning_rate
where lr is the learning_rate after warm-up.
Args:
learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
warmup_steps (int): Steps for warm up.
start_lr (float): Initial learning rate of warm up.
end_lr (float): Final learning rate of warm up.
Returns:
Variable: Warm-up learning rate with the same data type as learning_rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boundaries = [100, 200]
lr_steps = [0.1, 0.01, 0.001]
learning_rate = fluid.layers.piecewise_decay(boundaries, lr_steps) #case1, 1D-Tensor
#learning_rate = 0.1 #case2, single-value
warmup_steps = 50
start_lr = 1. / 3.
end_lr = 0.1
decayed_lr = fluid.layers.linear_lr_warmup(learning_rate,
warmup_steps, start_lr, end_lr)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
out, = exe.run(fetch_list=[decayed_lr.name])
print(out)
# case1: [0.33333334]
# case2: [0.33333334]
"""
dtype = 'float32'
if isinstance(learning_rate, Variable):
dtype = learning_rate.dtype
linear_step = float(end_lr) - float(start_lr)
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
lr = imperate_lr.LinearLrWarmup(learning_rate, warmup_steps,
start_lr, end_lr)
return lr
else:
lr = tensor.create_global_var(
shape=[1],
value=0.0,
dtype=dtype,
persistable=True,
name="learning_rate_warmup")
global_step = _decay_step_counter()
with control_flow.Switch() as switch:
with switch.case(global_step < warmup_steps):
decayed_lr = start_lr + linear_step * (global_step /
float(warmup_steps))
tensor.assign(decayed_lr, lr)
with switch.default():
if not isinstance(learning_rate, Variable):
learning_rate = tensor.fill_constant(
shape=[1], dtype=dtype, value=float(learning_rate))
tensor.assign(learning_rate, lr)
return lr