|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import collections
|
|
|
|
import contextlib
|
|
|
|
import sys
|
|
|
|
import numpy as np
|
|
|
|
import collections
|
add layer norm to Layers, add transformer test in imperative mode (#16092)
* add layer norm to Layers, add transformer prepare encoding
* little change
* finish encoder part
* add decoder part
* finish model part
* add test case and part of data feed
* add transformer test
* add to_parameter, add remove in set_attr
* test=develop, fix pos encoding bug, create_parameter with stantard name
* test=develop, rm dropout test in imperative
* test=develop, fix cpu error
* test=develop, fix minize bug
* test=develop, fix one hot not stop gradient
* test=develop, fix one hot not stop gradient
* test=develop, refine parameter name
* test=develop, fix transformer test in imperative mode
* test=develop, fix transformer test in imperative mode
* test=develop, fix boost and mkl download error
* test=develop, fix boost and mkl download error
* test=develop, fix ci and refine code
* test=develop, fix ci and refine code
6 years ago
|
|
|
import six
|
|
|
|
from .. import unique_name
|
|
|
|
from paddle.fluid import core
|
test=develop, reconstruct layer helper to fit imperative usage (#15938)
* test=develop, reconstruct layer helper to fit imperative usage
* test=develop, fix import error on py35
* test=develop, fix rnn gradient error
* test=develop, delete test use code
* test=develop, remove helper from imperative usage
* test=develop, fix test_base_layer using new helper
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, fix bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix bug
* test=develop, polish code
6 years ago
|
|
|
from .layer_object_helper import LayerObjectHelper
|
|
|
|
from paddle.fluid import framework
|
add layer norm to Layers, add transformer test in imperative mode (#16092)
* add layer norm to Layers, add transformer prepare encoding
* little change
* finish encoder part
* add decoder part
* finish model part
* add test case and part of data feed
* add transformer test
* add to_parameter, add remove in set_attr
* test=develop, fix pos encoding bug, create_parameter with stantard name
* test=develop, rm dropout test in imperative
* test=develop, fix cpu error
* test=develop, fix minize bug
* test=develop, fix one hot not stop gradient
* test=develop, fix one hot not stop gradient
* test=develop, refine parameter name
* test=develop, fix transformer test in imperative mode
* test=develop, fix transformer test in imperative mode
* test=develop, fix boost and mkl download error
* test=develop, fix boost and mkl download error
* test=develop, fix ci and refine code
* test=develop, fix ci and refine code
6 years ago
|
|
|
from ..param_attr import ParamAttr
|
|
|
|
|
|
|
|
__all__ = ['Layer', 'PyLayer']
|
|
|
|
|
|
|
|
|
|
|
|
class Layer(core.Layer):
|
|
|
|
"""Layers composed of operators.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name_scope: prefix name used by the layer to name parameters.
|
|
|
|
If prefix is "my_model/layer_1", parameter name in MyLayer
|
|
|
|
can be "my_model/layer_1/MyLayer/w_n", where w is the parameter
|
|
|
|
base name and n is an unique suffix auto-generated.
|
|
|
|
dtype: data type for the variables in the layer.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, name_scope, dtype=core.VarDesc.VarType.FP32):
|
|
|
|
self._full_name = unique_name.generate(name_scope + "/" +
|
|
|
|
self.__class__.__name__)
|
|
|
|
self._built = False
|
|
|
|
self._dtype = dtype
|
|
|
|
self._parameters = collections.OrderedDict()
|
|
|
|
self._sub_layers = collections.OrderedDict()
|
|
|
|
|
test=develop, reconstruct layer helper to fit imperative usage (#15938)
* test=develop, reconstruct layer helper to fit imperative usage
* test=develop, fix import error on py35
* test=develop, fix rnn gradient error
* test=develop, delete test use code
* test=develop, remove helper from imperative usage
* test=develop, fix test_base_layer using new helper
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, fix bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix bug
* test=develop, polish code
6 years ago
|
|
|
self._helper = LayerObjectHelper(self._full_name)
|
|
|
|
|
|
|
|
def full_name(self):
|
|
|
|
"""Full name for this layers.
|
|
|
|
|
|
|
|
Full name is composed by name_scope + "/" + MyLayer.__class__.__name__
|
|
|
|
|
|
|
|
Returns full name of this name.
|
|
|
|
"""
|
|
|
|
return self._full_name
|
|
|
|
|
test=develop, reconstruct layer helper to fit imperative usage (#15938)
* test=develop, reconstruct layer helper to fit imperative usage
* test=develop, fix import error on py35
* test=develop, fix rnn gradient error
* test=develop, delete test use code
* test=develop, remove helper from imperative usage
* test=develop, fix test_base_layer using new helper
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, fix bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix bug
* test=develop, polish code
6 years ago
|
|
|
def create_parameter(self,
|
|
|
|
attr,
|
|
|
|
shape,
|
|
|
|
dtype,
|
|
|
|
is_bias=False,
|
|
|
|
default_initializer=None):
|
|
|
|
"""Create parameters for this layers.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
attr: [ParamAttr] should be the parameter attribute for this parameter
|
|
|
|
shape: shape of the paramter
|
|
|
|
dtype: data type of this parameter
|
|
|
|
is_bias: if this is a bias parameter
|
|
|
|
default_initializer: set the default initializer for this parameter
|
|
|
|
|
|
|
|
Returns created parameter Variable.
|
|
|
|
"""
|
add layer norm to Layers, add transformer test in imperative mode (#16092)
* add layer norm to Layers, add transformer prepare encoding
* little change
* finish encoder part
* add decoder part
* finish model part
* add test case and part of data feed
* add transformer test
* add to_parameter, add remove in set_attr
* test=develop, fix pos encoding bug, create_parameter with stantard name
* test=develop, rm dropout test in imperative
* test=develop, fix cpu error
* test=develop, fix minize bug
* test=develop, fix one hot not stop gradient
* test=develop, fix one hot not stop gradient
* test=develop, refine parameter name
* test=develop, fix transformer test in imperative mode
* test=develop, fix transformer test in imperative mode
* test=develop, fix boost and mkl download error
* test=develop, fix boost and mkl download error
* test=develop, fix ci and refine code
* test=develop, fix ci and refine code
6 years ago
|
|
|
if isinstance(attr, ParamAttr) and (attr.name is not None):
|
|
|
|
attr.name = ".".join([self._full_name, attr.name])
|
|
|
|
elif isinstance(attr, six.string_types):
|
|
|
|
attr = ".".join([self._full_name, attr])
|
test=develop, reconstruct layer helper to fit imperative usage (#15938)
* test=develop, reconstruct layer helper to fit imperative usage
* test=develop, fix import error on py35
* test=develop, fix rnn gradient error
* test=develop, delete test use code
* test=develop, remove helper from imperative usage
* test=develop, fix test_base_layer using new helper
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, reconstruct layerhelper for imperative mode
* test=develop, fix bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix test failed bug
* test=develop, fix bug
* test=develop, polish code
6 years ago
|
|
|
return self._helper.create_parameter(attr, shape, dtype, is_bias,
|
|
|
|
default_initializer)
|
|
|
|
|
|
|
|
# TODO: Add more parameter list when we need them
|
|
|
|
def create_variable(self,
|
|
|
|
name=None,
|
|
|
|
persistable=None,
|
|
|
|
dtype=None,
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR):
|
|
|
|
"""Create Variable for this layers.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name: name of the variable
|
|
|
|
persistable: if set this variable persistable
|
|
|
|
dtype: data type of data in the variable
|
|
|
|
type: type of the variable
|
|
|
|
|
|
|
|
Returns created Variable.
|
|
|
|
"""
|
|
|
|
if name is not None:
|
|
|
|
var_name = ".".join([self._full_name, name])
|
|
|
|
else:
|
|
|
|
var_name = unique_name.generate(".".join(
|
|
|
|
[self._full_name, "_generated_var"]))
|
|
|
|
|
|
|
|
return self._helper.main_program.current_block().create_var(
|
|
|
|
name=var_name, persistable=persistable, dtype=dtype, type=type)
|
|
|
|
|
|
|
|
def parameters(self, include_sublayers=True):
|
|
|
|
"""Returns a list of Parameters from current and sub-layers.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
include_sublayers: If true, also include the parameters from
|
|
|
|
sublayers.
|
|
|
|
|
|
|
|
Returns a list of Parameters.
|
|
|
|
"""
|
|
|
|
ret = [p for p in self._parameters.values()]
|
|
|
|
if include_sublayers:
|
|
|
|
for l in self._sub_layers.values():
|
|
|
|
for p in l.parameters(include_sublayers):
|
|
|
|
ret.append(p)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def sublayers(self, include_sublayers=True):
|
|
|
|
"""Returns a list of sub layers.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
include_sublayers: If true, also include the layers from sublayers.
|
|
|
|
|
|
|
|
Returns a list of sub layers.
|
|
|
|
"""
|
|
|
|
ret = [l for l in self._sub_layers.values()]
|
|
|
|
if include_sublayers:
|
|
|
|
for l in self._sub_layers.values():
|
|
|
|
for sub_l in l.sublayers(include_sublayers):
|
|
|
|
ret.append(sub_l)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def clear_gradients(self):
|
|
|
|
for p in self.parameters():
|
|
|
|
p.clear_gradient()
|
|
|
|
|
|
|
|
def _build_once(self, *args):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __call__(self, *inputs):
|
|
|
|
if not self._built:
|
|
|
|
self._build_once(*inputs)
|
|
|
|
|
|
|
|
outputs = self.forward(*inputs)
|
|
|
|
self._built = True
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def forward(self, *inputs):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def backward(self, *inputs):
|
|
|
|
raise ValueError("Layer shouldn't implement backward")
|
|
|
|
|
|
|
|
def add_sublayer(self, name, sublayer):
|
|
|
|
"""Adds a sub Layer instance.
|
|
|
|
|
|
|
|
Added sublayer can be access like self.name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name: name of this sublayer.
|
|
|
|
sublayer: an instance of Layer.
|
|
|
|
Returns:
|
|
|
|
the sublayer passed in.
|
|
|
|
"""
|
|
|
|
assert isinstance(sublayer, core.Layer)
|
add layer norm to Layers, add transformer test in imperative mode (#16092)
* add layer norm to Layers, add transformer prepare encoding
* little change
* finish encoder part
* add decoder part
* finish model part
* add test case and part of data feed
* add transformer test
* add to_parameter, add remove in set_attr
* test=develop, fix pos encoding bug, create_parameter with stantard name
* test=develop, rm dropout test in imperative
* test=develop, fix cpu error
* test=develop, fix minize bug
* test=develop, fix one hot not stop gradient
* test=develop, fix one hot not stop gradient
* test=develop, refine parameter name
* test=develop, fix transformer test in imperative mode
* test=develop, fix transformer test in imperative mode
* test=develop, fix boost and mkl download error
* test=develop, fix boost and mkl download error
* test=develop, fix ci and refine code
* test=develop, fix ci and refine code
6 years ago
|
|
|
|
|
|
|
self._sub_layers[name] = sublayer
|
|
|
|
return sublayer
|
|
|
|
|
|
|
|
def add_parameter(self, name, parameter):
|
|
|
|
"""Adds a Parameter instance.
|
|
|
|
|
|
|
|
Added parameter can be access like self.name.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name: name of this sublayer.
|
|
|
|
parameter: an instance of Parameter.
|
|
|
|
Returns:
|
|
|
|
the parameter passed in.
|
|
|
|
"""
|
|
|
|
assert isinstance(parameter, framework.Parameter)
|
|
|
|
self._parameters[name] = parameter
|
|
|
|
return parameter
|
|
|
|
|
|
|
|
def __getattr__(self, name):
|
|
|
|
if name in self._parameters:
|
|
|
|
return self._parameters[name]
|
|
|
|
elif name in self._sub_layers:
|
|
|
|
return self._sub_layers[name]
|
|
|
|
|
|
|
|
def __setattr__(self, name, value):
|
|
|
|
if isinstance(value, framework.Parameter):
|
|
|
|
params = self.__dict__.get('_parameters', None)
|
|
|
|
if params is None:
|
|
|
|
raise ValueError(
|
|
|
|
"super(YourLayer, self).__init__() should be called first")
|
|
|
|
params[name] = value
|
|
|
|
elif isinstance(value, core.Layer):
|
|
|
|
layers = self.__dict__.get('_sub_layers', None)
|
|
|
|
if layers is None:
|
|
|
|
raise ValueError(
|
|
|
|
"super(YourLayer, self).__init__() should be called first")
|
|
|
|
layers[name] = value
|
|
|
|
else:
|
|
|
|
object.__setattr__(self, name, value)
|
|
|
|
|
|
|
|
def __delattr__(self, name):
|
|
|
|
if name in self._parameters:
|
|
|
|
del self._parameters[name]
|
|
|
|
elif name in self._sub_layers:
|
|
|
|
del self._sub_layers[name]
|
|
|
|
else:
|
|
|
|
object.__delattr__(self, name)
|
|
|
|
|
|
|
|
def state_dict(self, destination=None, prefix='', include_sublayers=True):
|
|
|
|
if destination is None:
|
|
|
|
destination = collections.OrderedDict()
|
|
|
|
for name, data in self._parameters.items():
|
|
|
|
if data is not None:
|
|
|
|
destination[prefix + name] = data
|
|
|
|
|
|
|
|
if include_sublayers:
|
|
|
|
for layer_name, layer_item in self._sub_layers.items():
|
|
|
|
if layer_item is not None:
|
|
|
|
destination_temp = destination.copy()
|
|
|
|
destination_temp.update(
|
|
|
|
layer_item.state_dict(destination_temp, prefix +
|
|
|
|
layer_name + ".",
|
|
|
|
include_sublayers))
|
|
|
|
destination = destination_temp
|
|
|
|
return destination
|
|
|
|
|
|
|
|
def load_dict(self, stat_dict, include_sublayers=True):
|
|
|
|
for name, item in self.__dict__.get('_parameters', None).items():
|
|
|
|
if item.name in stat_dict:
|
|
|
|
self.__setattr__(name, stat_dict[item.name])
|
|
|
|
|
|
|
|
if include_sublayers:
|
|
|
|
for layer_name, layer_item in self._sub_layers.items():
|
|
|
|
if layer_item is not None:
|
|
|
|
layer_item.load_dict(stat_dict)
|
|
|
|
|
|
|
|
|
|
|
|
class PyLayer(core.PyLayer):
|
|
|
|
"""Layers composed of user-defined python codes."""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(PyLayer, self).__init__()
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _do_forward(cls, inputs):
|
|
|
|
return cls._to_tuple(cls.forward(inputs))
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _do_backward(cls, inputs):
|
|
|
|
return cls._to_tuple(cls.backward(inputs))
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _to_tuple(inputs):
|
|
|
|
if not isinstance(inputs, list) and not isinstance(inputs, tuple):
|
|
|
|
inputs = [inputs]
|
|
|
|
ret = []
|
|
|
|
for inp in inputs:
|
|
|
|
tensor = core.LoDTensor()
|
|
|
|
tensor.set(inp, core.CPUPlace())
|
|
|
|
ret.append(tensor)
|
|
|
|
return tuple(ret)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def forward(*inputs):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(*douts):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def __call__(cls, *inputs):
|
|
|
|
tracer = framework._dygraph_tracer()
|
|
|
|
block = framework.default_main_program().current_block()
|
|
|
|
ivar_inputs = [x._ivar for x in inputs]
|
|
|
|
|
|
|
|
if not hasattr(cls, 'forward_id'):
|
|
|
|
cls.forward_id = core.PyLayer.num_funcs() + 1
|
|
|
|
PyLayer.register_func(cls.forward_id, cls._do_forward)
|
|
|
|
cls.backward_id = core.PyLayer.num_funcs() + 1
|
|
|
|
PyLayer.register_func(cls.backward_id, cls._do_backward)
|
|
|
|
|
|
|
|
iop = core.OpBase(cls.__class__.__name__ + str(cls.forward_id))
|
|
|
|
iop.forward_id = cls.forward_id
|
|
|
|
iop.backward_id = cls.backward_id
|
|
|
|
block.ops.append(iop)
|
|
|
|
ivars = tracer.py_trace(iop, ivar_inputs, False)
|
|
|
|
ret = []
|
|
|
|
for ivar in ivars:
|
|
|
|
tensor = ivar.value().get_tensor()
|
|
|
|
py_var = framework.Variable(
|
|
|
|
block,
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
name=None,
|
|
|
|
shape=tensor.shape(),
|
|
|
|
dtype=tensor._dtype(),
|
|
|
|
ivar=ivar)
|
|
|
|
ret.append(py_var)
|
|
|
|
return ret
|