You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/layer.py

502 lines
16 KiB

8 years ago
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.
The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.
```python
def network_config():
img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
inference = paddle.trainer_config_helpers.fc_layer(
input=img,
size=10,
act=paddle.trainer_config_helpers.SoftmaxActivation())
cost = paddle.trainer_config_helpers.classification_cost(
input=inference,
label=paddle.trainer_config_helpers.data_layer(name="label", size=10))
proto_desc = parse_network_config(network_config)
```
When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.
The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:
```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
input=inference,
label=paddle.v2.layer.data(name="label", size=10))
parameters = paddle.v2.parameters.create(cost)
```
This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
8 years ago
8 years ago
import collections
8 years ago
import inspect
from config_base import Layer, __convert_to_v2__
8 years ago
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import \
wrap_bias_attr_default
8 years ago
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.layers import layer_support
from paddle.trainer.config_parser import \
RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
RecurrentLayerGroupEnd, model_type
8 years ago
import activation
8 years ago
import data_type
8 years ago
__all__ = ['parse_network', 'data']
8 years ago
__projection_names__ = filter(lambda x: x.endswith('_projection'),
dir(conf_helps))
__all__ += __projection_names__
__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__
8 years ago
def parse_network(*outputs):
"""
parse all output layers and then generate a model config proto.
:param outputs:
:return:
"""
def __real_func__():
context = dict()
real_output = [each.to_proto(context=context) for each in outputs]
conf_helps.outputs(real_output)
return __parse__(__real_func__)
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""
class DataLayerV2(Layer):
def __init__(self, name, type, **kwargs):
assert isinstance(type, data_type.InputType)
self.type = type
8 years ago
self.__method_name__ = 'data_layer'
self.__kwargs__ = kwargs
super(DataLayerV2, self).__init__(name=name, parent_layers=dict())
def to_proto_impl(self, **kwargs):
args = dict()
args['size'] = self.type.dim
for each in kwargs:
args[each] = kwargs[each]
8 years ago
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
8 years ago
class WithExtraParent(Layer):
def extra_parent(self):
return self.__extra_parent__
def __init__(self, name=None, size=None, parent_layers=None):
8 years ago
self.__extra_parent__ = []
super(WithExtraParent, self).__init__(
name=name, size=size, parent_layers=parent_layers)
8 years ago
def append_extra_parent(self, parent):
self.__extra_parent__.append(parent)
8 years ago
8 years ago
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for p in self.__extra_parent__:
p.to_proto(context=context)
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.context_name() is None:
return self.to_proto_impl(context=context, **kwargs)
elif self.context_name() not in context:
context[self.context_name()] = self.to_proto_impl(
context=context, **kwargs)
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
class MemoryV2(WithExtraParent):
def __init__(self, name, size, **kwargs):
self.name = name
self.size = size
super(MemoryV2, self).__init__(
name=name, size=size, parent_layers=dict())
8 years ago
self.__kwargs__ = kwargs
self.__boot_layer_name__ = None
if 'boot_layer' in kwargs:
begin_of_current_rnn = []
# TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
# function inside step.
st = inspect.stack()
for i in xrange(len(st)):
locs = inspect.stack()[i][0].f_locals
keys = locs.keys()
for key in keys:
val = locs[key]
8 years ago
if isinstance(val, RecurrentLayerInput):
begin_of_current_rnn.append(val)
elif isinstance(val, collections.Sequence):
for v in val:
if isinstance(v, RecurrentLayerInput):
begin_of_current_rnn.append(v)
8 years ago
if begin_of_current_rnn:
break
assert begin_of_current_rnn is not None
for extra in begin_of_current_rnn:
self.append_extra_parent(extra)
assert isinstance(extra, WithExtraParent)
extra.append_extra_parent(kwargs['boot_layer'])
self.__boot_layer_name__ = kwargs['boot_layer'].name
def to_proto_impl(self, context, **kwargs):
8 years ago
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
8 years ago
if self.__boot_layer_name__ is not None:
args['boot_layer'] = context[self.__boot_layer_name__]
if callable(self.size):
real_size = self.size()
else:
real_size = self.size
args['size'] = real_size
return conf_helps.memory(name=self.name, **args)
8 years ago
def context_name(self):
return self.name + "#memory"
def use_context_name(self):
"""
memory layer will have the same name with some layer
:return:
"""
return True
8 years ago
class LayerOutputV2(Layer):
"""
LayerOutputV2 is used to store the result of LayerOutput in v1 api.
It will not store it's parents because layer_output has been parsed already.
"""
def __init__(self, layer_output):
assert isinstance(layer_output, conf_helps.LayerOutput)
self.layer_output = layer_output
super(LayerOutputV2, self).__init__(
name=layer_output.name, parent_layers=dict())
def to_proto_impl(self):
return self.layer_output
class StaticInputV2(object):
def __init__(self, input, is_seq=False, size=None):
assert isinstance(input, LayerV2)
self.name = input.name
self.input = input
self.is_seq = is_seq
self.size = size
# TODO(qiaolongfei): add size
# assert input.size is not None or size is not None
class MixedLayerV2(Layer):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class AddToSealedMixedLayerExceptionV2(Exception):
8 years ago
pass
def __init__(self,
size=0,
input=None,
name=None,
act=None,
bias_attr=None,
layer_attr=None):
self.__method_name__ = 'mixed_layer'
self.finalized = False
self.__inputs__ = []
if input is not None:
self.__inputs__ = input
other_kwargs = dict()
other_kwargs['name'] = name
other_kwargs['size'] = size
other_kwargs['act'] = act
other_kwargs['bias_attr'] = bias_attr
other_kwargs['layer_attr'] = layer_attr
parent_layers = {"input": self.__inputs__}
super(MixedLayerV2, self).__init__(name, size, parent_layers)
self.__other_kwargs__ = other_kwargs
def __iadd__(self, other):
if not self.finalized:
self.__inputs__.append(other)
return self
else:
8 years ago
raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
def __enter__(self):
assert len(self.__inputs__) == 0
return self
def __exit__(self, *args, **kwargs):
self.finalized = True
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
size = args.get('size', None)
if callable(size):
real_size = size()
else:
real_size = size
args['size'] = real_size
return getattr(conf_helps, self.__method_name__)(**args)
@wrap_name_default("mixed")
8 years ago
@wrap_act_default(act=activation.Linear())
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
name=None,
input=None,
act=None,
bias_attr=False,
layer_attr=None):
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
8 years ago
class RecurrentLayerInput(WithExtraParent):
def __init__(self, recurrent_name, index, parent_layers):
assert len(parent_layers) == 1
self.__parents__ = parent_layers.values()[0]
super(RecurrentLayerInput, self).__init__(
name=self.__parents__[index].name, parent_layers=parent_layers)
self.__recurrent_name__ = recurrent_name
def context_name(self):
return self.__recurrent_name__ + ".begin"
8 years ago
def to_proto_impl(self, context, **kwargs):
model_type('recurrent_nn')
RecurrentLayerGroupWithoutOutLinksBegin(
name=self.__recurrent_name__,
in_links=map(lambda x: x.name, self.__parents__))
return self
class RecurrentLayerOutput(Layer):
def __init__(self, recurrent_name, index, parent_layers):
assert len(parent_layers) == 1
self.__parents__ = parent_layers.values()[0]
super(RecurrentLayerOutput, self).__init__(
name=self.__parents__[index].name, parent_layers=parent_layers)
self.__recurrent_name__ = recurrent_name
def context_name(self):
return self.__recurrent_name__ + ".end"
def to_proto_impl(self, **kwargs):
for l in self.__parents__:
RecurrentLayerGroupSetOutLink(l.name)
RecurrentLayerGroupEnd(name=self.__recurrent_name__)
8 years ago
LayerV2 = Layer
data = DataLayerV2
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
8 years ago
memory = MemoryV2
8 years ago
def __layer_name_mapping__(inname):
if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
# Do Not handle these layers
return
elif inname == 'maxid_layer':
return 'max_id'
elif inname.endswith('memory') or inname.endswith(
'_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
return inname
elif inname in [
'cross_entropy', 'multi_binary_label_cross_entropy',
'cross_entropy_with_selfnorm'
]:
return inname + "_cost"
elif inname.endswith('_cost'):
return inname
elif inname.endswith("_layer"):
return inname[:-len("_layer")]
def __layer_name_mapping_parent_names__(inname):
all_args = getattr(conf_helps, inname).argspec.args
return filter(
8 years ago
lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
'expand_as',
'weights', 'vectors', 'weight', 'score', 'left',
'right', 'output_mem'],
all_args)
def __convert_layer__(_new_name_, _old_name_, _parent_names_):
global __all__
__all__.append(_new_name_)
globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)
for each_layer_name in dir(conf_helps):
new_name = __layer_name_mapping__(each_layer_name)
if new_name is not None:
parent_names = __layer_name_mapping_parent_names__(each_layer_name)
assert len(parent_names) != 0, each_layer_name
__convert_layer__(new_name, each_layer_name, parent_names)
del parent_names
del new_name
del each_layer_name
8 years ago
# convert projection
for prj in __projection_names__:
globals()[prj] = __convert_to_v2__(
prj, parent_names=['input'], is_default_name=False)
# convert operator
operator_list = [
# [V1_method_name, parent_names],
['dotmul_operator', ['a', 'b']],
['conv_operator', ['img', 'filter']]
]
for op in operator_list:
globals()[op[0]] = __convert_to_v2__(
op[0], parent_names=op[1], is_default_name=False)
@wrap_name_default()
def recurrent_group(step, input, name=None):
if not isinstance(input, collections.Sequence):
input = [input]
non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
input)
actual_input = [
RecurrentLayerInput(
recurrent_name=name,
index=i,
parent_layers={'recurrent_inputs': non_static_inputs})
for i in xrange(len(non_static_inputs))
]
def __real_step__(*args):
rnn_input = list(args)
static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
for static_input in static_inputs:
mem_name = "__%s_memory__" % static_input.input.name
print memory
mem = memory(
name=mem_name,
is_seq=static_input.is_seq,
size=static_input.input.calcalted_size,
boot_layer=static_input.input)
with mixed(
name=mem_name,
size=static_input.input.calcalted_size,
act=activation.Identity()) as mix:
mix += identity_projection(input=mem)
rnn_input.insert(input.index(static_input), mix)
return step(*rnn_input)
actual_output = __real_step__(*actual_input)
if not isinstance(actual_output, collections.Sequence):
actual_output = [actual_output]
retv = [
RecurrentLayerOutput(
recurrent_name=name,
index=i,
parent_layers={'recurrent_outputs': actual_output})
for i in xrange(len(actual_output))
]
if len(retv) == 1:
return retv[0]
else:
return retv