|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
|
|
#include "paddle/fluid/framework/scope.h"
|
|
|
|
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
|
|
|
|
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
|
|
|
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
|
|
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
extern const std::vector<std::string> kTRTSubgraphPasses;
|
|
|
|
extern const std::vector<std::string> kAnakinSubgraphPasses;
|
|
|
|
|
|
|
|
PassStrategy *AnalysisConfig::pass_builder() const {
|
|
|
|
if (!pass_builder_.get()) {
|
|
|
|
if (use_gpu_) {
|
|
|
|
LOG(INFO) << "Create GPU IR passes";
|
|
|
|
pass_builder_.reset(new GpuPassStrategy);
|
|
|
|
} else {
|
|
|
|
LOG(INFO) << "Create CPU IR passes";
|
|
|
|
pass_builder_.reset(new CpuPassStrategy);
|
|
|
|
}
|
|
|
|
} else if (pass_builder_->use_gpu() ^ use_gpu()) {
|
|
|
|
LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
|
|
|
|
"PassBuilder, the flags are "
|
|
|
|
<< use_gpu() << " " << pass_builder_->use_gpu();
|
|
|
|
LOG(WARNING) << "Please make them compatible, still use the existing "
|
|
|
|
"PassBuilder.";
|
|
|
|
}
|
|
|
|
|
|
|
|
return pass_builder_.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
|
|
|
|
model_dir_ = model_dir;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
|
|
|
|
const std::string ¶ms_file) {
|
|
|
|
prog_file_ = prog_file;
|
|
|
|
params_file_ = params_file;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
void AnalysisConfig::SetModel(const std::string &prog_file_path,
|
|
|
|
const std::string ¶ms_file_path) {
|
|
|
|
prog_file_ = prog_file_path;
|
|
|
|
params_file_ = params_file_path;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
|
|
|
|
int device_id) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
use_gpu_ = true;
|
|
|
|
memory_pool_init_size_mb_ = memory_pool_init_size_mb;
|
|
|
|
device_id_ = device_id;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with gpu to EnableGpu()";
|
|
|
|
use_gpu_ = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
void AnalysisConfig::DisableGpu() {
|
|
|
|
use_gpu_ = false;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
|
|
|
|
#define CP_MEMBER(member__) member__ = other.member__;
|
|
|
|
|
|
|
|
// Model related.
|
|
|
|
CP_MEMBER(model_dir_);
|
|
|
|
CP_MEMBER(model_from_memory_); // the memory model reuses prog_file_ and
|
|
|
|
// params_file_ fields.
|
|
|
|
|
|
|
|
CP_MEMBER(opt_cache_dir_);
|
|
|
|
prog_file_ = std::move(other.prog_file_);
|
|
|
|
params_file_ = std::move(other.params_file_);
|
|
|
|
|
|
|
|
// Gpu related.
|
|
|
|
CP_MEMBER(use_gpu_);
|
|
|
|
CP_MEMBER(device_id_);
|
|
|
|
CP_MEMBER(memory_pool_init_size_mb_);
|
|
|
|
|
|
|
|
CP_MEMBER(enable_memory_optim_);
|
|
|
|
CP_MEMBER(static_memory_optim_);
|
|
|
|
CP_MEMBER(static_memory_optim_force_update_);
|
|
|
|
// TensorRT related.
|
|
|
|
CP_MEMBER(use_tensorrt_);
|
|
|
|
CP_MEMBER(tensorrt_workspace_size_);
|
|
|
|
CP_MEMBER(tensorrt_max_batchsize_);
|
|
|
|
CP_MEMBER(tensorrt_min_subgraph_size_);
|
|
|
|
CP_MEMBER(tensorrt_precision_mode_);
|
|
|
|
CP_MEMBER(trt_use_static_engine_);
|
|
|
|
CP_MEMBER(trt_use_calib_mode_);
|
|
|
|
// NGRAPH related.
|
|
|
|
CP_MEMBER(use_ngraph_);
|
|
|
|
// MKLDNN related.
|
|
|
|
CP_MEMBER(use_mkldnn_);
|
|
|
|
CP_MEMBER(mkldnn_enabled_op_types_);
|
|
|
|
CP_MEMBER(mkldnn_cache_capacity_);
|
|
|
|
// Quantization related.
|
|
|
|
CP_MEMBER(use_mkldnn_quantizer_);
|
|
|
|
CP_MEMBER(mkldnn_quantizer_config_);
|
|
|
|
|
|
|
|
CP_MEMBER(use_anakin_);
|
|
|
|
CP_MEMBER(anakin_max_batchsize_);
|
|
|
|
CP_MEMBER(anakin_max_input_shape_);
|
|
|
|
CP_MEMBER(anakin_min_subgraph_size_);
|
|
|
|
CP_MEMBER(anakin_precision_mode_);
|
|
|
|
CP_MEMBER(anakin_auto_config_layout_);
|
|
|
|
CP_MEMBER(anakin_passes_filter_);
|
|
|
|
CP_MEMBER(anakin_ops_filter_);
|
|
|
|
|
|
|
|
// Ir related.
|
|
|
|
CP_MEMBER(enable_ir_optim_);
|
|
|
|
CP_MEMBER(use_feed_fetch_ops_);
|
|
|
|
CP_MEMBER(ir_debug_);
|
|
|
|
CP_MEMBER(specify_input_name_);
|
|
|
|
|
|
|
|
CP_MEMBER(cpu_math_library_num_threads_);
|
|
|
|
|
|
|
|
CP_MEMBER(serialized_info_cache_);
|
|
|
|
|
|
|
|
if (use_gpu_) {
|
|
|
|
pass_builder_.reset(new GpuPassStrategy(
|
|
|
|
*static_cast<GpuPassStrategy *>(other.pass_builder())));
|
|
|
|
} else {
|
|
|
|
pass_builder_.reset(new CpuPassStrategy(
|
|
|
|
*static_cast<CpuPassStrategy *>(other.pass_builder())));
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef CP_MEMBER
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::EnableMKLDNN() {
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
use_mkldnn_ = true;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
|
|
|
|
use_mkldnn_ = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
mkldnn_cache_capacity_ = capacity;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
|
|
|
|
mkldnn_cache_capacity_ = 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::EnableMkldnnQuantizer() {
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
if (!mkldnn_quantizer_config_)
|
|
|
|
mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
|
|
|
|
use_mkldnn_quantizer_ = true;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
|
|
|
|
use_mkldnn_quantizer_ = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::EnableNgraph() {
|
|
|
|
#ifdef PADDLE_WITH_NGRAPH
|
|
|
|
pass_builder()->EnableNgraph();
|
|
|
|
use_ngraph_ = true;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with NGRAPH first to use NGRAPH";
|
|
|
|
use_ngraph_ = false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
|
|
|
|
"MkldnnQuantizer was not enabled yet.");
|
|
|
|
return mkldnn_quantizer_config_.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::EnableTensorRtEngine(
|
|
|
|
int workspace_size, int max_batch_size, int min_subgraph_size,
|
|
|
|
AnalysisConfig::Precision precision_mode, bool use_static,
|
|
|
|
bool use_calib_mode) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
if (!use_gpu()) {
|
|
|
|
LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
use_tensorrt_ = true;
|
|
|
|
tensorrt_workspace_size_ = workspace_size;
|
|
|
|
tensorrt_max_batchsize_ = max_batch_size;
|
|
|
|
tensorrt_min_subgraph_size_ = min_subgraph_size;
|
|
|
|
tensorrt_precision_mode_ = precision_mode;
|
|
|
|
trt_use_static_engine_ = use_static;
|
|
|
|
trt_use_calib_mode_ = use_calib_mode;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
#else
|
|
|
|
LOG(ERROR)
|
|
|
|
<< "To use TensorRT engine, please compile inference lib with GPU first.";
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO(Superjomn) refactor this, buggy.
|
|
|
|
void AnalysisConfig::Update() {
|
|
|
|
auto info = SerializeInfoCache();
|
|
|
|
if (info == serialized_info_cache_) return;
|
|
|
|
|
|
|
|
// Transfer pass_builder and copy the existing compatible passes.
|
|
|
|
if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
|
|
|
|
if (use_gpu()) {
|
|
|
|
pass_builder_.reset(new GpuPassStrategy);
|
|
|
|
|
|
|
|
if (use_tensorrt_) {
|
|
|
|
// Append after the Affine_channel_conv_fuse pass.
|
|
|
|
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
pass_builder_.reset(new CpuPassStrategy);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
if (use_gpu()) {
|
|
|
|
pass_builder_.reset(new GpuPassStrategy(
|
|
|
|
*static_cast<GpuPassStrategy *>(pass_builder_.get())));
|
|
|
|
|
|
|
|
} else {
|
|
|
|
pass_builder_.reset(new CpuPassStrategy(
|
|
|
|
*static_cast<CpuPassStrategy *>(pass_builder_.get())));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_tensorrt_) {
|
|
|
|
pass_builder()->ClearPasses();
|
|
|
|
for (const auto &pass : kTRTSubgraphPasses) {
|
|
|
|
pass_builder()->AppendPass(pass);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_ngraph_) {
|
|
|
|
if (!enable_ir_optim_) {
|
|
|
|
LOG(ERROR)
|
|
|
|
<< "EnableNgraph() only works when IR optimization is enabled.";
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_NGRAPH
|
|
|
|
pass_builder()->EnableNgraph();
|
|
|
|
use_ngraph_ = true;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with NGRAPH first to use NGRAPH";
|
|
|
|
use_ngraph_ = false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_mkldnn_) {
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
if (!enable_ir_optim_) {
|
|
|
|
LOG(ERROR)
|
|
|
|
<< "EnableMKLDNN() only works when IR optimization is enabled.";
|
|
|
|
} else {
|
|
|
|
pass_builder()->EnableMKLDNN();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// Quantization passes must come after all other optimization passes
|
|
|
|
if (use_mkldnn_quantizer_) {
|
|
|
|
if (!enable_ir_optim_) {
|
|
|
|
LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
|
|
|
|
"is enabled.";
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
pass_builder()->EnableMkldnnQuantizer();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
// Do not optimize before quantization
|
|
|
|
if (enable_memory_optim_ && !use_mkldnn_quantizer_) {
|
|
|
|
#else
|
|
|
|
if (enable_memory_optim_) {
|
|
|
|
#endif
|
|
|
|
pass_builder()->AppendAnalysisPass("memory_optimize_pass");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_anakin_) {
|
|
|
|
PADDLE_ENFORCE(!use_tensorrt_,
|
|
|
|
"Anakin sub-graph and TensorRT sub-graph are not allowed to "
|
|
|
|
"run at the same time!");
|
|
|
|
if (use_gpu_) {
|
|
|
|
LOG(INFO) << "Run Anakin GPU mode";
|
|
|
|
} else {
|
|
|
|
LOG(INFO) << "Run Anakin CPU mode";
|
|
|
|
}
|
|
|
|
|
|
|
|
pass_builder()->ClearPasses();
|
|
|
|
for (const auto &pass : kAnakinSubgraphPasses) {
|
|
|
|
if (std::find(anakin_passes_filter_.begin(), anakin_passes_filter_.end(),
|
|
|
|
pass) == anakin_passes_filter_.end()) {
|
|
|
|
pass_builder()->AppendPass(pass);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ir_debug_) {
|
|
|
|
pass_builder()->TurnOnDebug();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string AnalysisConfig::SerializeInfoCache() {
|
|
|
|
std::stringstream ss;
|
|
|
|
ss << model_dir_;
|
|
|
|
ss << prog_file_;
|
|
|
|
ss << params_file_;
|
|
|
|
|
|
|
|
ss << use_gpu_;
|
|
|
|
ss << device_id_;
|
|
|
|
ss << memory_pool_init_size_mb_;
|
|
|
|
|
|
|
|
ss << use_tensorrt_;
|
|
|
|
ss << tensorrt_workspace_size_;
|
|
|
|
ss << tensorrt_max_batchsize_;
|
|
|
|
ss << tensorrt_min_subgraph_size_;
|
|
|
|
|
|
|
|
ss << enable_memory_optim_;
|
|
|
|
ss << static_memory_optim_;
|
|
|
|
ss << static_memory_optim_force_update_;
|
|
|
|
|
|
|
|
ss << use_ngraph_;
|
|
|
|
|
|
|
|
ss << use_mkldnn_;
|
|
|
|
ss << mkldnn_cache_capacity_;
|
|
|
|
for (auto &item : mkldnn_enabled_op_types_) ss << item;
|
|
|
|
ss << ";";
|
|
|
|
|
|
|
|
ss << use_mkldnn_quantizer_;
|
|
|
|
ss << model_from_memory_;
|
|
|
|
|
|
|
|
ss << enable_ir_optim_;
|
|
|
|
ss << use_feed_fetch_ops_;
|
|
|
|
ss << ir_debug_;
|
|
|
|
|
|
|
|
ss << specify_input_name_;
|
|
|
|
ss << cpu_math_library_num_threads_;
|
|
|
|
ss << use_anakin_;
|
|
|
|
ss << anakin_min_subgraph_size_;
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::SetCpuMathLibraryNumThreads(
|
|
|
|
int cpu_math_library_num_threads) {
|
|
|
|
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
// Get the GPU memory details and calculate the fraction of memory for the
|
|
|
|
// GPU memory pool.
|
|
|
|
size_t gpu_used, gpu_available;
|
|
|
|
platform::SetDeviceId(device_id_);
|
|
|
|
platform::GpuMemoryUsage(&gpu_used, &gpu_available);
|
|
|
|
double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
|
|
|
|
float fraction_of_gpu_memory =
|
|
|
|
static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
|
|
|
|
return fraction_of_gpu_memory;
|
|
|
|
#else
|
|
|
|
return 0.;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::EnableMemoryOptim(bool static_optim,
|
|
|
|
bool force_update_static_cache) {
|
|
|
|
enable_memory_optim_ = true;
|
|
|
|
static_memory_optim_ = static_optim;
|
|
|
|
static_memory_optim_force_update_ = force_update_static_cache;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AnalysisConfig::enable_memory_optim() const {
|
|
|
|
return enable_memory_optim_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
|
|
|
|
size_t prog_buffer_size,
|
|
|
|
const char *param_buffer,
|
|
|
|
size_t param_buffer_size) {
|
|
|
|
prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
|
|
|
|
params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
|
|
|
|
model_from_memory_ = true;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
NativeConfig AnalysisConfig::ToNativeConfig() const {
|
|
|
|
NativeConfig config;
|
|
|
|
config.model_dir = model_dir_;
|
|
|
|
config.prog_file = prog_file_;
|
|
|
|
config.param_file = params_file_;
|
|
|
|
config.use_gpu = use_gpu_;
|
|
|
|
config.device = device_id_;
|
|
|
|
config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
|
|
|
|
config.specify_input_name = specify_input_name_;
|
|
|
|
return config;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::SwitchIrDebug(int x) {
|
|
|
|
ir_debug_ = x;
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
void AnalysisConfig::EnableAnakinEngine(
|
|
|
|
int max_batch_size, std::map<std::string, std::vector<int>> max_input_shape,
|
|
|
|
int min_subgraph_size, AnalysisConfig::Precision precision_mode,
|
|
|
|
bool auto_config_layout, std::vector<std::string> passes_filter,
|
|
|
|
std::vector<std::string> ops_filter) {
|
|
|
|
anakin_max_batchsize_ = max_batch_size;
|
|
|
|
anakin_max_input_shape_ = max_input_shape;
|
|
|
|
anakin_min_subgraph_size_ = min_subgraph_size;
|
|
|
|
anakin_passes_filter_ = passes_filter;
|
|
|
|
anakin_ops_filter_ = ops_filter;
|
|
|
|
use_anakin_ = true;
|
|
|
|
anakin_precision_mode_ = precision_mode;
|
|
|
|
anakin_auto_config_layout_ = auto_config_layout;
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
void AnalysisConfig::PartiallyRelease() {
|
|
|
|
prog_file_.clear();
|
|
|
|
prog_file_.shrink_to_fit();
|
|
|
|
params_file_.clear();
|
|
|
|
params_file_.shrink_to_fit();
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace paddle
|