|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# TODO: define random functions
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from ..fluid import core
|
|
|
|
from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, Variable, convert_np_dtype_to_dtype_
|
|
|
|
from ..fluid.layers.layer_function_generator import templatedoc
|
|
|
|
from ..fluid.layer_helper import LayerHelper
|
|
|
|
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
|
|
|
|
from ..fluid.layers import utils, gaussian_random
|
|
|
|
from ..fluid.layers.tensor import fill_constant
|
|
|
|
|
|
|
|
from ..fluid.io import shuffle #DEFINE_ALIAS
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
# 'gaussin',
|
|
|
|
'uniform',
|
|
|
|
'shuffle',
|
|
|
|
'randn',
|
|
|
|
'rand',
|
|
|
|
'randint',
|
|
|
|
'randperm'
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
|
|
|
|
"""
|
|
|
|
This OP returns a Tensor filled with random values sampled from a uniform
|
|
|
|
distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
::
|
|
|
|
|
|
|
|
Input:
|
|
|
|
shape = [1, 2]
|
|
|
|
|
|
|
|
Output:
|
|
|
|
result=[[0.8505902, 0.8397286]]
|
|
|
|
|
|
|
|
Args:
|
|
|
|
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
|
|
|
|
is a list or tuple, the elements of it should be integers or Tensors
|
|
|
|
(with the shape [1], and the data type int32 or int64). If ``shape``
|
|
|
|
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
|
|
|
|
int64).
|
|
|
|
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
|
|
|
|
the output Tensor. Supported data types: float32, float64.
|
|
|
|
Default is float32.
|
|
|
|
min(float|int, optional): The lower bound on the range of random values
|
|
|
|
to generate, ``min`` is included in the range. Default is -1.0.
|
|
|
|
max(float|int, optional): The upper bound on the range of random values
|
|
|
|
to generate, ``max`` is excluded in the range. Default is 1.0.
|
|
|
|
seed(int, optional): Random seed used for generating samples. 0 means
|
|
|
|
use a seed generated by the system. Note that if seed is not 0,
|
|
|
|
this operator will always generate the same random numbers every
|
|
|
|
time. Default is 0.
|
|
|
|
name(str, optional): The default value is None. Normally there is no
|
|
|
|
need for user to set this property. For more information, please
|
|
|
|
refer to :ref:`api_guide_Name`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: A Tensor filled with random values sampled from a uniform
|
|
|
|
distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: If ``shape`` is not list, tuple, Tensor.
|
|
|
|
TypeError: If ``dtype`` is not float32, float64.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
# example 1:
|
|
|
|
# attr shape is a list which doesn't contain Tensor.
|
|
|
|
result_1 = paddle.tensor.random.uniform(shape=[3, 4])
|
|
|
|
# [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357],
|
|
|
|
# [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
|
|
|
|
# [ 0.433519, 0.39483607, -0.8660099, 0.83664286]]
|
|
|
|
|
|
|
|
# example 2:
|
|
|
|
# attr shape is a list which contains Tensor.
|
|
|
|
dim_1 = paddle.fill_constant([1], "int64", 2)
|
|
|
|
dim_2 = paddle.fill_constant([1], "int32", 3)
|
|
|
|
result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
|
|
|
|
# [[-0.9951253, 0.30757582, 0.9899647 ],
|
|
|
|
# [ 0.5864527, 0.6607096, -0.8886161 ]]
|
|
|
|
|
|
|
|
# example 3:
|
|
|
|
# attr shape is a Tensor, the data type must be int64 or int32.
|
|
|
|
shape = np.array([2, 3])
|
|
|
|
shape_tensor = paddle.to_tensor(shape)
|
|
|
|
|
|
|
|
result_3 = paddle.tensor.random.uniform(shape_tensor)
|
|
|
|
# if shape_tensor's value is [2, 3]
|
|
|
|
# result_3 is:
|
|
|
|
# [[-0.8517412, -0.4006908, 0.2551912 ],
|
|
|
|
# [ 0.3364414, 0.36278176, -0.16085452]]
|
|
|
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
"""
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
|
|
|
|
if in_dygraph_mode():
|
|
|
|
shape = utils._convert_shape_to_list(shape)
|
|
|
|
return core.ops.uniform_random('shape', shape, 'min',
|
|
|
|
float(min), 'max',
|
|
|
|
float(max), 'seed', seed, 'dtype', dtype)
|
|
|
|
|
|
|
|
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
|
|
|
|
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand')
|
|
|
|
|
|
|
|
inputs = dict()
|
|
|
|
attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
|
|
|
|
utils._get_shape_tensor_inputs(
|
|
|
|
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')
|
|
|
|
|
|
|
|
helper = LayerHelper("uniform_random", **locals())
|
|
|
|
out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
helper.append_op(
|
|
|
|
type="uniform_random", inputs=inputs, attrs=attrs,
|
|
|
|
outputs={"Out": out})
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
|
|
|
|
"""
|
|
|
|
:alias_main: paddle.randint
|
|
|
|
:alias: paddle.tensor.randint, paddle.tensor.random.randint
|
|
|
|
|
|
|
|
This OP returns a Tensor filled with random integers from a discrete uniform
|
|
|
|
distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
|
|
|
|
If ``high`` is None (the default), the range is [0, ``low``).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
low(int): The lower bound on the range of random values to generate.
|
|
|
|
The ``low`` is included in the range. If ``high`` is None, the
|
|
|
|
range is [0, ``low``). Default is 0.
|
|
|
|
high(int, optional): The upper bound on the range of random values to
|
|
|
|
generate, the ``high`` is excluded in the range. Default is None
|
|
|
|
(see above for behavior if high = None). Default is None.
|
|
|
|
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
|
|
|
|
is a list or tuple, the elements of it should be integers or Tensors
|
|
|
|
(with the shape [1], and the data type int32 or int64). If ``shape``
|
|
|
|
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
|
|
|
|
int64). Default is [1].
|
|
|
|
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
|
|
|
|
output tensor. Supported data types: int32, int64. If ``dytpe``
|
|
|
|
is None, the data type is int64. Default is None.
|
|
|
|
name(str, optional): The default value is None. Normally there is no
|
|
|
|
need for user to set this property. For more information, please
|
|
|
|
refer to :ref:`api_guide_Name`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: A Tensor filled with random integers from a discrete uniform
|
|
|
|
distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: If ``shape`` is not list, tuple, Tensor.
|
|
|
|
TypeError: If ``dtype`` is not int32, int64.
|
|
|
|
ValueError: If ``high`` is not greater then ``low``; If ``high`` is
|
|
|
|
None, and ``low`` is not greater than 0.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
# example 1:
|
|
|
|
# attr shape is a list which doesn't contain Tensor.
|
|
|
|
result_1 = paddle.randint(low=-5, high=5, shape=[3])
|
|
|
|
# [0, -3, 2]
|
|
|
|
|
|
|
|
# example 2:
|
|
|
|
# attr shape is a list which contains Tensor.
|
|
|
|
dim_1 = paddle.fill_constant([1], "int64", 2)
|
|
|
|
dim_2 = paddle.fill_constant([1], "int32", 3)
|
|
|
|
result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
|
|
|
|
# [[0, -1, -3],
|
|
|
|
# [4, -2, 0]]
|
|
|
|
|
|
|
|
# example 3:
|
|
|
|
# attr shape is a Tensor
|
|
|
|
var_shape = paddle.to_variable(np.array([3]))
|
|
|
|
result_3 = paddle.randint(low=-5, high=5, shape=var_shape)
|
|
|
|
# [-2, 2, 3]
|
|
|
|
|
|
|
|
# example 4:
|
|
|
|
# data type is int32
|
|
|
|
result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
|
|
|
|
# [-5, 4, -4]
|
|
|
|
|
|
|
|
# example 5:
|
|
|
|
# Input only one parameter
|
|
|
|
# low=0, high=10, shape=[1], dtype='int64'
|
|
|
|
result_5 = paddle.randint(10)
|
|
|
|
# [7]
|
|
|
|
|
|
|
|
"""
|
|
|
|
if high is None:
|
|
|
|
if low <= 0:
|
|
|
|
raise ValueError(
|
|
|
|
"If high is None, low must be greater than 0, but received low = {0}.".
|
|
|
|
format(low))
|
|
|
|
high = low
|
|
|
|
low = 0
|
|
|
|
if dtype is None:
|
|
|
|
dtype = 'int64'
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
|
|
|
|
if in_dygraph_mode():
|
|
|
|
shape = utils._convert_shape_to_list(shape)
|
|
|
|
return core.ops.randint('shape', shape, 'low', low, 'high', high,
|
|
|
|
'seed', 0, 'dtype', dtype)
|
|
|
|
|
|
|
|
check_type(shape, 'shape', (list, tuple, Variable), 'randint')
|
|
|
|
check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
|
|
|
|
if low >= high:
|
|
|
|
raise ValueError(
|
|
|
|
"randint's low must less then high, but received low = {0}, "
|
|
|
|
"high = {1}".format(low, high))
|
|
|
|
|
|
|
|
inputs = dict()
|
|
|
|
attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
|
|
|
|
utils._get_shape_tensor_inputs(
|
|
|
|
inputs=inputs, attrs=attrs, shape=shape, op_type='randint')
|
|
|
|
|
|
|
|
helper = LayerHelper("randint", **locals())
|
|
|
|
out = helper.create_variable_for_type_inference(dtype=dtype)
|
|
|
|
helper.append_op(
|
|
|
|
type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def randn(shape, dtype=None, name=None):
|
|
|
|
"""
|
|
|
|
:alias_main: paddle.randn
|
|
|
|
:alias: paddle.tensor.randn, paddle.tensor.random.randn
|
|
|
|
|
|
|
|
This OP returns a Tensor filled with random values sampled from a normal
|
|
|
|
distribution with mean 0 and standard deviation 1 (also called the standard
|
|
|
|
normal distribution), with ``shape`` and ``dtype``.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
|
|
|
|
is a list or tuple, the elements of it should be integers or Tensors
|
|
|
|
(with the shape [1], and the data type int32 or int64). If ``shape``
|
|
|
|
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
|
|
|
|
int64).
|
|
|
|
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
|
|
|
|
output tensor. Supported data types: float32, float64. If ``dytpe``
|
|
|
|
is None, the data type is float32. Default is None.
|
|
|
|
name(str, optional): The default value is None. Normally there is no
|
|
|
|
need for user to set this property. For more information, please
|
|
|
|
refer to :ref:`api_guide_Name`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: A Tensor filled with random values sampled from a normal
|
|
|
|
distribution with mean 0 and standard deviation 1 (also called the
|
|
|
|
standard normal distribution), with ``shape`` and ``dtype``.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: If ``shape`` is not list, tuple, Tensor.
|
|
|
|
TypeError: If ``dtype`` is not float32, float64.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
# example 1: attr shape is a list which doesn't contain Tensor.
|
|
|
|
result_1 = paddle.randn(shape=[2, 3])
|
|
|
|
# [[-2.923464 , 0.11934398, -0.51249987],
|
|
|
|
# [ 0.39632758, 0.08177969, 0.2692008 ]]
|
|
|
|
|
|
|
|
# example 2: attr shape is a list which contains Tensor.
|
|
|
|
dim_1 = paddle.fill_constant([1], "int64", 2)
|
|
|
|
dim_2 = paddle.fill_constant([1], "int32", 3)
|
|
|
|
result_2 = paddle.randn(shape=[dim_1, dim_2, 2])
|
|
|
|
# [[[-2.8852394 , -0.25898588],
|
|
|
|
# [-0.47420555, 0.17683524],
|
|
|
|
# [-0.7989969 , 0.00754541]],
|
|
|
|
# [[ 0.85201347, 0.32320443],
|
|
|
|
# [ 1.1399018 , 0.48336947],
|
|
|
|
# [ 0.8086993 , 0.6868893 ]]]
|
|
|
|
|
|
|
|
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
|
|
|
|
var_shape = paddle.to_variable(np.array([2, 3]))
|
|
|
|
result_3 = paddle.randn(var_shape)
|
|
|
|
# [[-2.878077 , 0.17099959, 0.05111201]
|
|
|
|
# [-0.3761474, -1.044801 , 1.1870178 ]]
|
|
|
|
|
|
|
|
"""
|
|
|
|
if dtype is None:
|
|
|
|
dtype = 'float32'
|
|
|
|
|
|
|
|
out = gaussian_random(
|
|
|
|
shape=shape, mean=0.0, std=1.0, seed=0, dtype=dtype, name=name)
|
|
|
|
out.stop_gradient = True
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
@templatedoc()
|
|
|
|
def randperm(n, dtype="int64", name=None):
|
|
|
|
"""
|
|
|
|
:alias_main: paddle.randperm
|
|
|
|
:alias: paddle.tensor.randperm, paddle.tensor.random.randperm
|
|
|
|
|
|
|
|
This OP returns a 1-D Tensor filled with random permutation values from 0
|
|
|
|
to n-1, with ``dtype``.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
n(int): The upper bound (exclusive), and it should be greater than 0.
|
|
|
|
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
|
|
|
|
the output Tensor. Supported data types: int32, int64, float32,
|
|
|
|
float64. Default is int64.
|
|
|
|
name(str, optional): The default value is None. Normally there is no
|
|
|
|
need for user to set this property. For more information, please
|
|
|
|
refer to :ref:`api_guide_Name`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: A 1-D Tensor filled with random permutation values from 0
|
|
|
|
to n-1, with ``dtype``.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If ``n`` is not greater than 0.
|
|
|
|
TypeError: If ``dtype`` is not int32, int64, float32, float64.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
result_1 = paddle.randperm(5)
|
|
|
|
# [4, 1, 2, 3, 0]
|
|
|
|
|
|
|
|
result_2 = paddle.randperm(7, 'int32')
|
|
|
|
# [1, 6, 2, 0, 4, 3, 5]
|
|
|
|
|
|
|
|
"""
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
|
|
|
|
if in_dygraph_mode():
|
|
|
|
return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
|
|
|
|
|
|
|
|
if n < 1:
|
|
|
|
raise ValueError("The input n should be greater than 0 in randperm op.")
|
|
|
|
check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
|
|
|
|
'randperm')
|
|
|
|
|
|
|
|
helper = LayerHelper("randperm", **locals())
|
|
|
|
out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
attrs = {'n': n, 'dtype': dtype, 'seed': 0}
|
|
|
|
helper.append_op(
|
|
|
|
type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
|
|
|
|
out.stop_gradient = True
|
|
|
|
return out
|
upload code for tensor.rand (#23507)
* upload code for tensor.rand
* fix import
* update example, change paddle.tensor.rand to paddle.rand
* change 'variable' to 'Variable', test=develop
change 'variable' to 'Variable' in description, test=develop
* add pre-commit check
* add pre-commit check
* pre-commit check, test=develop
* add more unittest code
* trigger ci, test=develop
* pre-commit check, test=develop
* update api and test comment, test=develop
* update api and test comment, test=develop
* add more type check, test=develop
* add detail error info for device, test=develop
* add unnittest, test=develop
* resolve conflict and pre-commit check, test=develop
5 years ago
|
|
|
|
|
|
|
|
|
|
|
def rand(shape, dtype=None, name=None):
|
upload code for tensor.rand (#23507)
* upload code for tensor.rand
* fix import
* update example, change paddle.tensor.rand to paddle.rand
* change 'variable' to 'Variable', test=develop
change 'variable' to 'Variable' in description, test=develop
* add pre-commit check
* add pre-commit check
* pre-commit check, test=develop
* add more unittest code
* trigger ci, test=develop
* pre-commit check, test=develop
* update api and test comment, test=develop
* update api and test comment, test=develop
* add more type check, test=develop
* add detail error info for device, test=develop
* add unnittest, test=develop
* resolve conflict and pre-commit check, test=develop
5 years ago
|
|
|
"""
|
|
|
|
:alias_main: paddle.rand
|
|
|
|
:alias: paddle.tensor.rand, paddle.tensor.random.rand
|
|
|
|
|
|
|
|
This OP returns a Tensor filled with random values sampled from a uniform
|
|
|
|
distribution in the range [0, 1), with ``shape`` and ``dtype``.
|
upload code for tensor.rand (#23507)
* upload code for tensor.rand
* fix import
* update example, change paddle.tensor.rand to paddle.rand
* change 'variable' to 'Variable', test=develop
change 'variable' to 'Variable' in description, test=develop
* add pre-commit check
* add pre-commit check
* pre-commit check, test=develop
* add more unittest code
* trigger ci, test=develop
* pre-commit check, test=develop
* update api and test comment, test=develop
* update api and test comment, test=develop
* add more type check, test=develop
* add detail error info for device, test=develop
* add unnittest, test=develop
* resolve conflict and pre-commit check, test=develop
5 years ago
|
|
|
|
|
|
|
Examples:
|
|
|
|
::
|
|
|
|
|
|
|
|
Input:
|
|
|
|
shape = [1, 2]
|
|
|
|
|
|
|
|
Output:
|
|
|
|
result=[[0.8505902, 0.8397286]]
|
|
|
|
|
|
|
|
Args:
|
|
|
|
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
|
|
|
|
is a list or tuple, the elements of it should be integers or Tensors
|
|
|
|
(with the shape [1], and the data type int32 or int64). If ``shape``
|
|
|
|
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
|
|
|
|
int64).
|
|
|
|
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
|
|
|
|
output tensor. Supported data types: float32, float64. If ``dytpe``
|
|
|
|
is None, the data type is float32. Default is None.
|
|
|
|
name(str, optional): The default value is None. Normally there is no
|
|
|
|
need for user to set this property. For more information, please
|
|
|
|
refer to :ref:`api_guide_Name`.
|
|
|
|
|
upload code for tensor.rand (#23507)
* upload code for tensor.rand
* fix import
* update example, change paddle.tensor.rand to paddle.rand
* change 'variable' to 'Variable', test=develop
change 'variable' to 'Variable' in description, test=develop
* add pre-commit check
* add pre-commit check
* pre-commit check, test=develop
* add more unittest code
* trigger ci, test=develop
* pre-commit check, test=develop
* update api and test comment, test=develop
* update api and test comment, test=develop
* add more type check, test=develop
* add detail error info for device, test=develop
* add unnittest, test=develop
* resolve conflict and pre-commit check, test=develop
5 years ago
|
|
|
Returns:
|
|
|
|
Tensor: A Tensor filled with random values sampled from a uniform
|
|
|
|
distribution in the range [0, 1), with ``shape`` and ``dtype``.
|
upload code for tensor.rand (#23507)
* upload code for tensor.rand
* fix import
* update example, change paddle.tensor.rand to paddle.rand
* change 'variable' to 'Variable', test=develop
change 'variable' to 'Variable' in description, test=develop
* add pre-commit check
* add pre-commit check
* pre-commit check, test=develop
* add more unittest code
* trigger ci, test=develop
* pre-commit check, test=develop
* update api and test comment, test=develop
* update api and test comment, test=develop
* add more type check, test=develop
* add detail error info for device, test=develop
* add unnittest, test=develop
* resolve conflict and pre-commit check, test=develop
5 years ago
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: If ``shape`` is not list, tuple, Tensor.
|
|
|
|
ValueError: If ``dtype`` is not float32, float64.
|
upload code for tensor.rand (#23507)
* upload code for tensor.rand
* fix import
* update example, change paddle.tensor.rand to paddle.rand
* change 'variable' to 'Variable', test=develop
change 'variable' to 'Variable' in description, test=develop
* add pre-commit check
* add pre-commit check
* pre-commit check, test=develop
* add more unittest code
* trigger ci, test=develop
* pre-commit check, test=develop
* update api and test comment, test=develop
* update api and test comment, test=develop
* add more type check, test=develop
* add detail error info for device, test=develop
* add unnittest, test=develop
* resolve conflict and pre-commit check, test=develop
5 years ago
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
# example 1: attr shape is a list which doesn't contain Tensor.
|
|
|
|
result_1 = paddle.rand(shape=[2, 3])
|
|
|
|
# [[0.451152 , 0.55825245, 0.403311 ],
|
|
|
|
# [0.22550228, 0.22106001, 0.7877319 ]]
|
|
|
|
|
|
|
|
# example 2: attr shape is a list which contains Tensor.
|
|
|
|
dim_1 = paddle.fill_constant([1], "int64", 2)
|
|
|
|
dim_2 = paddle.fill_constant([1], "int32", 3)
|
|
|
|
result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
|
|
|
|
# [[[0.8879919 , 0.25788337],
|
|
|
|
# [0.28826773, 0.9712097 ],
|
|
|
|
# [0.26438272, 0.01796806]],
|
|
|
|
# [[0.33633623, 0.28654453],
|
|
|
|
# [0.79109055, 0.7305809 ],
|
|
|
|
# [0.870881 , 0.2984597 ]]]
|
|
|
|
|
|
|
|
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
|
|
|
|
var_shape = paddle.to_variable(np.array([2, 3]))
|
|
|
|
result_3 = paddle.rand(var_shape)
|
|
|
|
# [[0.22920267, 0.841956 , 0.05981819],
|
|
|
|
# [0.4836288 , 0.24573246, 0.7516129 ]]
|
upload code for tensor.rand (#23507)
* upload code for tensor.rand
* fix import
* update example, change paddle.tensor.rand to paddle.rand
* change 'variable' to 'Variable', test=develop
change 'variable' to 'Variable' in description, test=develop
* add pre-commit check
* add pre-commit check
* pre-commit check, test=develop
* add more unittest code
* trigger ci, test=develop
* pre-commit check, test=develop
* update api and test comment, test=develop
* update api and test comment, test=develop
* add more type check, test=develop
* add detail error info for device, test=develop
* add unnittest, test=develop
* resolve conflict and pre-commit check, test=develop
5 years ago
|
|
|
|
|
|
|
"""
|
|
|
|
if dtype is None:
|
|
|
|
dtype = 'float32'
|
|
|
|
|
|
|
|
out = uniform(shape, dtype, min=0.0, max=1.0, name=name)
|
|
|
|
out.stop_gradient = True
|
|
|
|
return out
|