* Remove constraint that last dimension is forced to be 1 by add
lookup_table_v2 test=develop
* modify into PADDLE_ENFORCE_CUDA_SUCCESS test=develop
* Revert "modify into PADDLE_ENFORCE_CUDA_SUCCESS test=develop"
This reverts commit 8a960bfc61e51aa27c3c529df8fb90b93ebd19f9.
* move api into fluid.embedding test=develop
* fix example code test=develop
* move one_hot into fluid.one_hot
* modify api.spec test=develop
* fix loss shape test=develop
1. Support customize eval function instead of eval program.
2. Fix loading checkpoint in quantization strategy.
3. Support saving eval model when saving a checkpoint.
4. Fix decoder of loading context in PaddleSlim.
5. Fix restoring from the checkpoint of uniform prune strategy.
6. Support saving eval model and infer model during training.
7. Add ‘unitest’ for saving eval model, saving infer model and uniform pruning restoring from the checkpoint.
8. Fix pruning of depthwise_conv_grad op by updating the groups.
* add recompute based checkpoints methods for large batch training
test=develop
* add append_backward_with_forward_recomputation
test=develop
* refine optimizer
test=develop
* update backward and optimizer
test=develop
* make Variable usable
test=develop
* add recompute code
* refine optimizer
test=develop
* refine addup _append_backward_ops_with_checkpoints_
1) for recompute part, just cache the grad_op_desc without appending to block
2) before appending grad_op_desc to backward part, addup_repetitive_vars, remove unused branch
test=develop
* make method private
* add recompute strategy into DistributedStrategy
test=develop
* checkpoint version3
test=develop
* remove some print information
test=develop
* remove unused sumop
test=develop
* try to fix recompute with graph building modules
* add input names to vars should be held
* add memory debug tool
* backup backward
* Fix bugs
* add backward desc for op not in any segments
* add exception info for sub_block
test=develop
* modify code style
test=develop
* modify code style
test=develop
* remove print functions
test=develop
* add API spec
test=develop
test=document_preview
* make Recompute a child class of Optimizer
test=develop
test=document_preview
* add API spec
test=develop
test=document_preview
* modify API spec
test=develop
test=document_preview
* add document for Recompute
test=develop
test=document_preview
* change API doc of Rcompute
test=develop
test=document_preview
* code cleaning
test=develop
test=document_preview
* modify API spec
* fix bugs when segments hold no element
* add testcase for Recompute Optimizer
test=develop
test=document_preview
* add test for apply_gradient, and code cleaning
test=develop
test=document_preview
* add test case for load function
* enable CI
test=develop
test=document
* add test case
test=develop
test=document_preview
* add sample code for 4 function of recompute optimizer
test=develop
test=document_preview
* move tree_conv to fluid.contrib.layers
test=develop
* update API.spec for tree_conv
test=develop
* update tree_conv api to increase unit coverage
test=develop
modified interpolate_op to support tensor attribute
1. the parameter out_shape of image_resize、resize_nearest/bilinear/trilinear can be a list or a 1-D tensor variable. If a list, each element can be an integer or a tensor variable with shape: [1].
2. the parameter scale of above Ops can be a 1-D tensor variable.
modified document of image_resize, resize_nearest, resize_bilinear, resize_trilinear and add some code example.
add crop_tensor op. The main difference with crop is :
1. If the argument shape is a list, each element is an integer or a tensor variable with shape: [1]. This way is suitable for the case that the shape may be changed each iteration.
2. If the argument shape is a variable. Its rank must be 1. In crop op, the rank of shape must be the same as x
offsets can be a list, in which each element is an integer or a tensor variavle with shape: [1].
* strided_slice op basic function test=develop
* test=develop rewrite and fix
* fix bug test=develop
* fix for the PADDLE_ENFORCE usage
* add some unit testw
* fix for the aip test and copright and fix test=develop
* fix API.spec test=develop
* fix API.spec test=develop
* add axis parameter test=develop
* fix for the build error test=develop
* fix python api test=develop
* fix the build test=develop
* fix build test=develop
* fix API spec test=develop
* test=develop add some comment and single op test
* fix API spece test=develop
* fix test=develop
* fix test=develop
* fix api test=develop
* fix api test=develop
* fix API.spec test=develop
* fix typo test=develop
* fix API.spec test=develop
* fix API typo test=develop
* fix doc and API.spec test=develop
improve pow op according to reviews:
1. Delete unnecessary judgement statements in PowGradOpDescMaker;
2. Improve test of test_api;
overload GetKernelTypeForVar
add stop_gradient=True when attr(factor) is tensor Variable, change examples in API pow.
test=develop,test=document_preview
add support parameter inference when argument shape is a list containing integer and tensor variable;
test=develop
fix reshape op according to reviews:
1. improve or message;
2. improve test of test_api.
test=develop,test=document_preview
fix reshape op: Add error message in nn.py, test=develop
add stop_gradient=True when attr(shape) is tensor Variable.
change examples in API reshape.
test=develop,test=document_preview
add support parameter inference when arguments starts or ends is a list containing integer and tensor variable;
test=develop,test=document_preview
improve slice op according to review(from hongyu). test=develop
fix slice op according to review: infer_flags, test=develop
fix slice op: improve overload operator __getitem__ to support attrs(starts and ends) are Variable.
test=develop,test=document_preview
fix test_slice_op: add TestSliceOp_decs_dim_6 to resolve conflict with test_slice_ngraph_op. test=develop
add stop_gradient=True when attr(starts) or attr(ends) is tensor Variable.
test=develop,test=document_preview
1. add tensor support for argument expand_times in expand op;
2. add support parameter inference when argument expand_times is a list containing integer and tensor variable;
improve expand op according to reviews:
1. add doc of ExpandTimes in expand_op.cc;
2. improve the test of test_api.
add stop_gradient=True when attr(expand_times) is tensor Variable, change code examples.
test=develop,test=document_preview
* refactor dygraph,test=develop
* fix failed unittest,test=develop
* polish code,test=develop
* check windows ci error,test=develop
try to fix windows ci error by np.allclose,test=develop
* polish vlog and profiler, test=develop
* try to fix preceding ops order,test=develop
* test transformer in windows ci, test=develop
* use python c-api to speed up tracer.trace,test=develop
* test=develop, fix docker with paddle nccl problem
* test=develop, add ut for debug string and gradient_accumulator
* test=develop, add tests for layer/gradient_accumulator/prepared_op
* test=develop, fix complie error for test_prepared_op
* test=develop, add more ut for dygraph
* test=develop, create API.spec for dygraph api change
* test=develop, refoctor name to make it easier to understand
* test=develop, refoctor name to make it easier to understand
* test=develop, fix multi-gpu failed problem , add Tracer tests, change PADDLEENFORCE to PADDLEENFORCE_EQ
* test=develop, fix ut failed on parallel se-resnext
* test=develop, change one more PADDLE_ENFORCE
* test=develop add a argument for softshrink python api
* test=develop fix doc format
test=develop fix doc format
* test=develop fix API.spec
test=develop fix API.spec
* fix con2d transpose bias by create and init it in build_onee
* fix API spec
* test=develop, invoke ci
* fix bias_attr and act has no effect error on layer norm, conv2dTranpose, billinearTensorProduct, sequece_conv. fix original_mode not used error on GRUunit. fix sample_weight not set error on NCE. Add ut for all thoese layer
* test=develop, change success standard for conv2dTranspose
* test=develop, fix test_layers to invoke some error branch
* test=develop, fix sample code
* test=develop, fix BilinearTensorProduct failed in dygraph mode
* test=develop, fix test_layers segment fault error
* support tensor input with padding for warpctc op
* merge with develop
* test=develop
* modified python API examples test=develop
* nn.py is modified for code coverage test=develop
* update documents info about warpctc op in API.spec test=develop
* add test_warpctc_with_padding in test_layers test=develop
* add warning log for cuda_version back to warpctc_op.cc
* modify API.spec for warpctc op test=develop
* modify API.spec
* update warpctc test to new CompiledProgram API test=develop
* modify code examples for warpctc op test=develop
* modify API.spec for warpctc op test=develop
* modify API.spec for warpctc op test=develop
* change the default value of summarize from -1 to 20 in Print op to improve ease of use, test=develop
* change the doc of API Print to make the document easier to understand, test=develop
* instag lod tensor impl
* First PR for instag
* First PR for instag
* Before adding Selection Rows.
* Change name from instag to filter_instag, add upgrade the impl of filter_instag
* Change name from instag to filter_instag, add upgrade the impl of filter_instag
* Fix yapf error in gradient_checker.py to pass Travis-CI
* Fix Filter Instag Grad test=develop
* Fix Filter Instag Grad test=develop
* 1) Fix API.spec, add filter_instag Op. 2) Add Vector Support for CUDA. test=develop
* Impl Loss_weight and empty output handler
* change Loss Weight datatype to Float32, and add Loss Weight as 2nd output
* 1) Support Tensor Input(without LOD) 2) Add Unit test
* Filter By Instag Final test=develop
* Update API.spec for filter_by_instag test=develop
* Update API.spec for filter_by_instag 2 test=develop
* Add Filter By Instag Coverage
* code format of test_layers.py
* code format test_layers.py test=develop
* Make API args more readable test=develop
* Make API args more readable and pass code format test=develop
* Filter By Instag Op, Rename Map to Index Map test=develop
* Filter By Instag Op, code format err in filter_by_instag_op.cc test=develop
* Filter by instag op: code format of cpp files test=develop
* Filter by instag Op: Api spec modification test=develop
* Filter by instag Op: Api spec doc id modification test=develop
* Filter by instag Op: Api spec and doc preview test=develop test=document_preview
* Filter By Instag Op, fix doc erro test=document_preview test=develop
* Filter By Instag Op, fix doc err and Api spec test=document_preview test=develop
* Filter By Instag Op, fix Api spec test=document_preview test=develop
* Filter By Instag Op, fix Paddle Encoforce deprecated warning test=document_preview test=develop
* Filter By Instag Op, fix Paddle Encoforce deprecated and code format warning test=document_preview test=develop
* add hard_swish activation op (new op)
test=develop
* remove redundancy files
* modify document content of HardSwish OP
* add API test in test_layers.py
* add dynamic_graph for test_hard_swish
* test=develop
Add the op of unique_with_counts, the op is calc the unqiue input of data, and output the corresponding indices and count of data.
* test=develop
Check the input and dtype in the op of unique_with_counts
* test=develop
test=document_preview
update the API.spec for `unique_with_counts`, at the same time, optimize the python api in the op of `unique_with_count`
* test=develop
test=document_preview
Fix some python api problem in the op of `unique_with_counts`, and change the error messsage in this op.
* Fix some API problem in the op of `unique_with_counts`
test=develop
test=document_preview
* test=develop
test=document_preview
Fix the api sample of op `unique_with_counts`, and update api.spec
* support center loss
* change tensor copy api to high level api tensorcopy
* test=develop rewrite the center_loss cuda_kernel to make it faster
and add document of the center loss api,also update test function
* test=document_preview test=develop
update document of center loss
* test=document_preview test=develop
modify API.spec modify test code remove nouse const_cast