|
|
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""
|
|
|
|
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
|
|
|
|
we want to make Paddle a plain Python package. The model config package defined
|
|
|
|
the way how to configure a neural network topology in Paddle Python code.
|
|
|
|
|
|
|
|
The primary usage shows below.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
|
|
|
img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
|
|
|
|
hidden = paddle.layer.fc(input=img, size=200)
|
|
|
|
prediction = paddle.layer.fc(input=hidden, size=10,
|
|
|
|
act=paddle.activation.Softmax())
|
|
|
|
|
|
|
|
# use prediction instance where needed.
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
"""
|
|
|
|
|
|
|
|
import collections
|
|
|
|
import inspect
|
|
|
|
from config_base import Layer, __convert_to_v2__
|
|
|
|
import paddle.trainer_config_helpers as conf_helps
|
|
|
|
from paddle.trainer_config_helpers.config_parser_utils import \
|
|
|
|
parse_network_config as __parse__
|
|
|
|
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
|
|
|
|
from paddle.trainer_config_helpers.default_decorators import \
|
|
|
|
wrap_bias_attr_default
|
|
|
|
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
|
|
|
from paddle.trainer_config_helpers.layers import layer_support
|
|
|
|
from paddle.trainer.config_parser import \
|
|
|
|
RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
|
|
|
|
RecurrentLayerGroupEnd, model_type
|
|
|
|
|
|
|
|
import activation
|
|
|
|
import re
|
|
|
|
import data_type
|
|
|
|
|
|
|
|
__all__ = ['parse_network', 'data']
|
|
|
|
|
|
|
|
|
|
|
|
def parse_network(output_layers, extra_layers=None):
|
|
|
|
"""
|
|
|
|
Parse all layers in the neural network graph and
|
|
|
|
then generate a ModelConfig object.
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
This function is used internally in paddle.v2 module. User should never
|
|
|
|
invoke this method.
|
|
|
|
|
|
|
|
:param output_layers: Output layers.
|
|
|
|
:type output_layers: Layer
|
|
|
|
:param extra_layers: Some layers in the neural network graph are not in the
|
|
|
|
path of output_layers.
|
|
|
|
:type extra_layers: Layer
|
|
|
|
:return: A ModelConfig object instance.
|
|
|
|
:rtype: ModelConfig
|
|
|
|
"""
|
|
|
|
if not isinstance(output_layers, collections.Sequence):
|
|
|
|
output_layers = [output_layers]
|
|
|
|
if extra_layers is not None and not isinstance(extra_layers,
|
|
|
|
collections.Sequence):
|
|
|
|
extra_layers = [extra_layers]
|
|
|
|
|
|
|
|
def __real_func__():
|
|
|
|
"""
|
|
|
|
__real_func__ is the function that config_parser.parse invoked. It is
|
|
|
|
the plain old paddle configuration function.
|
|
|
|
"""
|
|
|
|
context = dict()
|
|
|
|
real_output = [each.to_proto(context=context) for each in output_layers]
|
|
|
|
if extra_layers is not None:
|
|
|
|
extra_output = [
|
|
|
|
each.to_proto(context=context) for each in extra_layers
|
|
|
|
]
|
|
|
|
conf_helps.outputs(real_output)
|
|
|
|
|
|
|
|
return __parse__(__real_func__)
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
|
|
|
|
So we also need to implement some special LayerV2.
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
class DataLayerV2(Layer):
|
|
|
|
METHOD_NAME = 'data_layer'
|
|
|
|
|
|
|
|
def __init__(self, name, type, **kwargs):
|
|
|
|
assert isinstance(type, data_type.InputType)
|
|
|
|
|
|
|
|
self.type = type
|
|
|
|
self.__method_name__ = 'data_layer'
|
|
|
|
self.__kwargs__ = kwargs
|
|
|
|
|
|
|
|
super(DataLayerV2, self).__init__(name=name, parent_layers=dict())
|
|
|
|
|
|
|
|
def to_proto_impl(self, context=None, **kwargs):
|
|
|
|
args = dict()
|
|
|
|
args['size'] = self.type.dim
|
|
|
|
for each in kwargs:
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
for each in self.__kwargs__:
|
|
|
|
args[each] = self.__kwargs__[each]
|
|
|
|
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
|
|
|
|
|
|
|
|
def __map_docstr__(doc):
|
|
|
|
doc = re.sub(r'(data = [^\)]+)\).*',
|
|
|
|
"data = paddle.layer.data(name=\"input\", "
|
|
|
|
"type=paddle.data_type.dense_vector(1000))", doc)
|
|
|
|
|
|
|
|
doc = re.sub(r':param size:.*',
|
|
|
|
':param type: Data type of this data layer', doc)
|
|
|
|
doc = re.sub(r':type size:.*',
|
|
|
|
":type size: paddle.v2.data_type.InputType", doc)
|
|
|
|
return doc
|
|
|
|
|
|
|
|
|
|
|
|
class MemoryV2(Layer):
|
|
|
|
def __init__(self, name, extra_input=None, **kwargs):
|
|
|
|
self.name = name
|
|
|
|
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
|
|
|
|
self.__kwargs__ = kwargs
|
|
|
|
self.__boot_layer_name__ = None
|
|
|
|
|
|
|
|
if 'boot_layer' in kwargs:
|
|
|
|
begin_of_current_rnn = []
|
|
|
|
# TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
|
|
|
|
# function inside step.
|
|
|
|
st = inspect.stack()
|
|
|
|
for i in xrange(len(st)):
|
|
|
|
locs = inspect.stack()[i][0].f_locals
|
|
|
|
keys = locs.keys()
|
|
|
|
for key in keys:
|
|
|
|
val = locs[key]
|
|
|
|
if isinstance(val, RecurrentLayerInput):
|
|
|
|
begin_of_current_rnn.append(val)
|
|
|
|
elif isinstance(val, collections.Sequence):
|
|
|
|
for v in val:
|
|
|
|
if isinstance(v, RecurrentLayerInput):
|
|
|
|
begin_of_current_rnn.append(v)
|
|
|
|
|
|
|
|
if begin_of_current_rnn:
|
|
|
|
break
|
|
|
|
assert begin_of_current_rnn is not None
|
|
|
|
for extra in begin_of_current_rnn:
|
|
|
|
self.append_extra_parent(extra)
|
|
|
|
extra.append_extra_parent(kwargs['boot_layer'])
|
|
|
|
self.__boot_layer_name__ = kwargs['boot_layer'].name
|
|
|
|
|
|
|
|
def to_proto_impl(self, context=None, **kwargs):
|
|
|
|
args = dict()
|
|
|
|
for each in kwargs:
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
for each in self.__kwargs__:
|
|
|
|
args[each] = self.__kwargs__[each]
|
|
|
|
|
|
|
|
if self.__boot_layer_name__ is not None:
|
|
|
|
args['boot_layer'] = context[self.__boot_layer_name__]
|
|
|
|
|
|
|
|
size = args.get('size', None)
|
|
|
|
if size is not None:
|
|
|
|
if callable(size):
|
|
|
|
real_size = size()
|
|
|
|
else:
|
|
|
|
real_size = size
|
|
|
|
args['size'] = real_size
|
|
|
|
return conf_helps.memory(name=self.name, **args)
|
|
|
|
|
|
|
|
def context_name(self):
|
|
|
|
return self.name + "#memory"
|
|
|
|
|
|
|
|
def use_context_name(self):
|
|
|
|
"""
|
|
|
|
memory layer will have the same name with some layer
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
class StaticInputV2(object):
|
|
|
|
def __init__(self, input, is_seq=False, size=None):
|
|
|
|
assert isinstance(input, LayerV2)
|
|
|
|
self.name = input.name
|
|
|
|
self.input = input
|
|
|
|
self.is_seq = is_seq
|
|
|
|
self.size = size
|
|
|
|
# TODO(add size check)
|
|
|
|
# assert input.size is not None or size is not None
|
|
|
|
|
|
|
|
|
|
|
|
class MixedLayerV2(Layer):
|
|
|
|
"""
|
|
|
|
This class is use to support `with` grammar. If not, the following code
|
|
|
|
could convert mixed_layer simply.
|
|
|
|
|
|
|
|
mixed = __convert_to_v2__(
|
|
|
|
'mixed_layer', name_prefix='mixed', parent_names=['input'])
|
|
|
|
"""
|
|
|
|
|
|
|
|
class AddToSealedMixedLayerExceptionV2(Exception):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
size=0,
|
|
|
|
input=None,
|
|
|
|
name=None,
|
|
|
|
act=None,
|
|
|
|
bias_attr=None,
|
|
|
|
layer_attr=None):
|
|
|
|
self.__method_name__ = 'mixed_layer'
|
|
|
|
self.finalized = False
|
|
|
|
self.__inputs__ = []
|
|
|
|
if input is not None:
|
|
|
|
self.__inputs__ = input
|
|
|
|
|
|
|
|
other_kwargs = dict()
|
|
|
|
other_kwargs['name'] = name
|
|
|
|
other_kwargs['size'] = size
|
|
|
|
other_kwargs['act'] = act
|
|
|
|
other_kwargs['bias_attr'] = bias_attr
|
|
|
|
other_kwargs['layer_attr'] = layer_attr
|
|
|
|
parent_layers = {"input": self.__inputs__}
|
|
|
|
super(MixedLayerV2, self).__init__(name, parent_layers)
|
|
|
|
self.__other_kwargs__ = other_kwargs
|
|
|
|
|
|
|
|
def __iadd__(self, other):
|
|
|
|
if not self.finalized:
|
|
|
|
self.__inputs__.append(other)
|
|
|
|
return self
|
|
|
|
else:
|
|
|
|
raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
assert len(self.__inputs__) == 0
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
|
|
self.finalized = True
|
|
|
|
|
|
|
|
def to_proto_impl(self, context=None, **kwargs):
|
|
|
|
args = dict()
|
|
|
|
for each in kwargs:
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
for each in self.__other_kwargs__:
|
|
|
|
args[each] = self.__other_kwargs__[each]
|
|
|
|
size = args.get('size', None)
|
|
|
|
if size is not None:
|
|
|
|
if callable(size):
|
|
|
|
real_size = size()
|
|
|
|
else:
|
|
|
|
real_size = size
|
|
|
|
args['size'] = real_size
|
|
|
|
return getattr(conf_helps, self.__method_name__)(**args)
|
|
|
|
|
|
|
|
|
|
|
|
@wrap_name_default("mixed")
|
|
|
|
@wrap_act_default(act=activation.Linear())
|
|
|
|
@wrap_bias_attr_default(has_bias=False)
|
|
|
|
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
|
|
|
|
def mixed(size=0,
|
|
|
|
name=None,
|
|
|
|
input=None,
|
|
|
|
act=None,
|
|
|
|
bias_attr=False,
|
|
|
|
layer_attr=None):
|
|
|
|
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
|
|
|
|
|
|
|
|
|
|
|
|
class RecurrentLayerInput(Layer):
|
|
|
|
def __init__(self, recurrent_name, index, parent_layers):
|
|
|
|
parents_len = len(parent_layers)
|
|
|
|
assert parents_len <= 1
|
|
|
|
if parents_len == 0:
|
|
|
|
self.__parents__ = []
|
|
|
|
else:
|
|
|
|
self.__parents__ = parent_layers.values()[0]
|
|
|
|
self.__recurrent_name__ = recurrent_name
|
|
|
|
name = self.__parents__[
|
|
|
|
index].name if index >= 0 else self.context_name()
|
|
|
|
super(RecurrentLayerInput, self).__init__(
|
|
|
|
name=name, parent_layers=parent_layers)
|
|
|
|
|
|
|
|
def context_name(self):
|
|
|
|
return self.__recurrent_name__ + ".begin"
|
|
|
|
|
|
|
|
def to_proto_impl(self, context=None, **kwargs):
|
|
|
|
model_type('recurrent_nn')
|
|
|
|
RecurrentLayerGroupWithoutOutLinksBegin(
|
|
|
|
name=self.__recurrent_name__,
|
|
|
|
in_links=map(lambda x: x.name, self.__parents__))
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
|
|
class RecurrentLayerOutput(Layer):
|
|
|
|
def __init__(self, recurrent_name, index, parent_layers):
|
|
|
|
assert len(parent_layers) == 1
|
|
|
|
self.__parents__ = parent_layers.values()[0]
|
|
|
|
super(RecurrentLayerOutput, self).__init__(
|
|
|
|
name=self.__parents__[index].name, parent_layers=parent_layers)
|
|
|
|
self.__recurrent_name__ = recurrent_name
|
|
|
|
|
|
|
|
def context_name(self):
|
|
|
|
return self.__recurrent_name__ + ".end"
|
|
|
|
|
|
|
|
def to_proto_impl(self, context=None, **kwargs):
|
|
|
|
for l in self.__parents__:
|
|
|
|
RecurrentLayerGroupSetOutLink(l.name)
|
|
|
|
RecurrentLayerGroupEnd(name=self.__recurrent_name__)
|
|
|
|
|
|
|
|
|
|
|
|
LayerV2 = Layer
|
|
|
|
data = DataLayerV2
|
|
|
|
data.__name__ = 'data'
|
|
|
|
AggregateLevel = conf_helps.layers.AggregateLevel
|
|
|
|
ExpandLevel = conf_helps.layers.ExpandLevel
|
|
|
|
memory = MemoryV2
|
|
|
|
|
|
|
|
|
|
|
|
def __layer_name_mapping__(inname):
|
|
|
|
if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
|
|
|
|
# Do Not handle these layers
|
|
|
|
return
|
|
|
|
elif inname == 'maxid_layer':
|
|
|
|
return 'max_id'
|
|
|
|
elif inname.endswith('memory') or inname.endswith(
|
|
|
|
'_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
|
|
|
|
return inname
|
|
|
|
elif inname in [
|
|
|
|
'cross_entropy', 'multi_binary_label_cross_entropy',
|
|
|
|
'cross_entropy_with_selfnorm'
|
|
|
|
]:
|
|
|
|
return inname + "_cost"
|
|
|
|
elif inname.endswith('_cost'):
|
|
|
|
return inname
|
|
|
|
elif inname.endswith("_layer"):
|
|
|
|
return inname[:-len("_layer")]
|
|
|
|
|
|
|
|
|
|
|
|
def __layer_name_mapping_parent_names__(inname):
|
|
|
|
all_args = getattr(conf_helps, inname).argspec.args
|
|
|
|
return filter(
|
|
|
|
lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
|
|
|
|
'expand_as',
|
|
|
|
'weights', 'vectors', 'weight', 'score', 'left',
|
|
|
|
'right', 'output_mem'],
|
|
|
|
all_args)
|
|
|
|
|
|
|
|
|
|
|
|
def __convert_layer__(_new_name_, _old_name_, _parent_names_):
|
|
|
|
global __all__
|
|
|
|
__all__.append(_new_name_)
|
|
|
|
globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)
|
|
|
|
globals()[new_name].__name__ = new_name
|
|
|
|
|
|
|
|
|
|
|
|
for each_layer_name in dir(conf_helps):
|
|
|
|
new_name = __layer_name_mapping__(each_layer_name)
|
|
|
|
if new_name is not None:
|
|
|
|
parent_names = __layer_name_mapping_parent_names__(each_layer_name)
|
|
|
|
assert len(parent_names) != 0, each_layer_name
|
|
|
|
__convert_layer__(new_name, each_layer_name, parent_names)
|
|
|
|
|
|
|
|
del parent_names
|
|
|
|
del new_name
|
|
|
|
del each_layer_name
|
|
|
|
|
|
|
|
|
|
|
|
@wrap_name_default()
|
|
|
|
def recurrent_group(step, input, name=None):
|
|
|
|
if not isinstance(input, collections.Sequence):
|
|
|
|
input = [input]
|
|
|
|
|
|
|
|
non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
|
|
|
|
input)
|
|
|
|
actual_input = [
|
|
|
|
RecurrentLayerInput(
|
|
|
|
recurrent_name=name,
|
|
|
|
index=i,
|
|
|
|
parent_layers={'recurrent_inputs': non_static_inputs})
|
|
|
|
for i in xrange(len(non_static_inputs))
|
|
|
|
]
|
|
|
|
|
|
|
|
extra_input = None
|
|
|
|
if len(non_static_inputs) == 0:
|
|
|
|
extra_input = RecurrentLayerInput(
|
|
|
|
recurrent_name=name, index=-1, parent_layers={})
|
|
|
|
|
|
|
|
def __real_step__(*args):
|
|
|
|
rnn_input = list(args)
|
|
|
|
static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
|
|
|
|
for static_input in static_inputs:
|
|
|
|
mem_name = "__%s_memory__" % static_input.input.name
|
|
|
|
mem = memory(
|
|
|
|
name=mem_name,
|
|
|
|
extra_input=extra_input,
|
|
|
|
is_seq=static_input.is_seq,
|
|
|
|
size=static_input.input.calculate_size,
|
|
|
|
boot_layer=static_input.input)
|
|
|
|
with mixed(
|
|
|
|
name=mem_name,
|
|
|
|
size=static_input.input.calculate_size,
|
|
|
|
act=activation.Identity()) as mix:
|
|
|
|
mix += identity_projection(input=mem)
|
|
|
|
mem.append_child(layer=mix, parent_names=[mem.context_name()])
|
|
|
|
rnn_input.insert(input.index(static_input), mem)
|
|
|
|
return step(*rnn_input)
|
|
|
|
|
|
|
|
actual_output = __real_step__(*actual_input)
|
|
|
|
|
|
|
|
if not isinstance(actual_output, collections.Sequence):
|
|
|
|
actual_output = [actual_output]
|
|
|
|
|
|
|
|
retv = [
|
|
|
|
RecurrentLayerOutput(
|
|
|
|
recurrent_name=name,
|
|
|
|
index=i,
|
|
|
|
parent_layers={'recurrent_outputs': actual_output})
|
|
|
|
for i in xrange(len(actual_output))
|
|
|
|
]
|
|
|
|
if len(retv) == 1:
|
|
|
|
return retv[0]
|
|
|
|
else:
|
|
|
|
return retv
|
|
|
|
|
|
|
|
|
|
|
|
__projection_names__ = filter(lambda x: x.endswith('_projection'),
|
|
|
|
dir(conf_helps))
|
|
|
|
|
|
|
|
__all__ += __projection_names__
|
|
|
|
|
|
|
|
__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
|
|
|
|
__all__ += __operator_names__
|
|
|
|
|
|
|
|
# convert projection
|
|
|
|
for prj in __projection_names__:
|
|
|
|
globals()[prj] = __convert_to_v2__(
|
|
|
|
prj, parent_names=['input'], is_default_name=False)
|
|
|
|
globals()[prj].__name__ = prj
|
|
|
|
|
|
|
|
# convert operator
|
|
|
|
operator_list = [
|
|
|
|
# [V1_method_name, parent_names],
|
|
|
|
['dotmul_operator', ['a', 'b']],
|
|
|
|
['conv_operator', ['img', 'filter']]
|
|
|
|
]
|
|
|
|
for op in operator_list:
|
|
|
|
globals()[op[0]] = __convert_to_v2__(
|
|
|
|
op[0], parent_names=op[1], is_default_name=False)
|
|
|
|
globals()[op[0]].__name__ = op[0]
|