|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/imperative/layer.h"
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <deque>
|
|
|
|
#include <limits>
|
|
|
|
#include <map>
|
|
|
|
#include <random>
|
|
|
|
#include <unordered_set>
|
|
|
|
#include <utility>
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
#include "paddle/fluid/framework/operator.h"
|
|
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
|
|
#include "paddle/fluid/string/printf.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace imperative {
|
|
|
|
|
|
|
|
void ThreadSafeNameSet::Insert(const std::string& name) {
|
|
|
|
std::lock_guard<std::mutex> guard(mtx_);
|
|
|
|
set_.insert(name);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ThreadSafeNameSet::Remove(const std::string& name) {
|
|
|
|
std::lock_guard<std::mutex> guard(mtx_);
|
|
|
|
auto iter = set_.find(name);
|
|
|
|
PADDLE_ENFORCE(iter != set_.end(), "%s does not exist", name);
|
|
|
|
set_.erase(iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<std::string> ThreadSafeNameSet::Names() const {
|
|
|
|
std::lock_guard<std::mutex> guard(mtx_);
|
|
|
|
return std::vector<std::string>(set_.begin(), set_.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
ThreadSafeNameSet VarBase::name_set_;
|
|
|
|
|
|
|
|
std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }
|
|
|
|
|
|
|
|
using framework::Variable;
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class TensorAddToFunctor : public boost::static_visitor<> {
|
|
|
|
public:
|
|
|
|
TensorAddToFunctor(int64_t numel, const T* x, T* y)
|
|
|
|
: numel_(numel), x_(x), y_(y) {}
|
|
|
|
|
|
|
|
void operator()(const platform::CPUPlace& place) {
|
|
|
|
platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
|
|
|
|
platform::DeviceContextPool::Instance().Get(place));
|
|
|
|
auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
|
|
|
|
blas.AXPY(numel_, 1., x_, y_);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
void operator()(const platform::CUDAPlace& place) {
|
|
|
|
platform::CUDADeviceContext* ctx =
|
|
|
|
dynamic_cast<platform::CUDADeviceContext*>(
|
|
|
|
platform::DeviceContextPool::Instance().Get(place));
|
|
|
|
auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
|
|
|
|
blas.AXPY(numel_, 1., x_, y_);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void operator()(const platform::CUDAPlace& place) {
|
|
|
|
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// there is NO blas in CUDAPinnedPlace
|
|
|
|
void operator()(const platform::CUDAPinnedPlace& place) {
|
|
|
|
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
int64_t numel_;
|
|
|
|
const T* x_;
|
|
|
|
T* y_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
void AddTo(std::shared_ptr<VarBase> src, std::shared_ptr<VarBase> dst,
|
|
|
|
platform::Place place, GradientRef* grad_ref) {
|
|
|
|
PADDLE_ENFORCE(grad_ref->find(dst.get()) != grad_ref->end(),
|
|
|
|
"gradient %s are not found in grad_ref", dst->Name());
|
|
|
|
if ((*grad_ref)[dst.get()].second) {
|
|
|
|
PADDLE_ENFORCE(src->IsInitialize(), "Using uninitialized VarBase");
|
|
|
|
dst->var_ = std::move(src->var_);
|
|
|
|
(*grad_ref)[dst.get()].second = false;
|
|
|
|
if (!dst->IsInitialize()) {
|
|
|
|
dst->SetInitialize(true);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
framework::Tensor* dst_tensor =
|
|
|
|
dst->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
framework::Tensor* src_tensor =
|
|
|
|
src->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
|
|
|
|
// FIXME(minqiyang): loss_grad op will pass a zero grad of label
|
|
|
|
// ugly fix for it
|
|
|
|
if (src_tensor->numel() == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
|
|
|
|
"dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
|
|
|
|
src_tensor->numel());
|
|
|
|
|
|
|
|
detail::TensorAddToFunctor<float> func(
|
|
|
|
src_tensor->numel(), src_tensor->data<float>(),
|
|
|
|
dst_tensor->mutable_data<float>(place));
|
|
|
|
boost::apply_visitor(func, place);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ZeroGrads(const std::shared_ptr<imperative::VarBase> vb,
|
|
|
|
const platform::Place& place) {
|
|
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
|
|
auto* dev_ctx = pool.Get(place);
|
|
|
|
auto grad_t = vb->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
operators::math::set_constant(*dev_ctx, grad_t, 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddGradBySort(BackwardSumMap* bck_map,
|
|
|
|
std::shared_ptr<imperative::VarBase> target,
|
|
|
|
GradientRef* grad_ref) {
|
|
|
|
PADDLE_ENFORCE(bck_map->find(target.get()) != bck_map->end(),
|
|
|
|
"Can't find %s in backward grad map", target->Name());
|
|
|
|
std::pair<platform::Place,
|
|
|
|
std::vector<std::pair<int, std::shared_ptr<imperative::VarBase>>>>&
|
|
|
|
current = bck_map->at(target.get());
|
|
|
|
std::sort(current.second.begin(), current.second.end(),
|
|
|
|
[](const std::pair<int, std::shared_ptr<imperative::VarBase>>& a,
|
|
|
|
const std::pair<int, std::shared_ptr<imperative::VarBase>>& b) {
|
|
|
|
return a.first > b.first;
|
|
|
|
});
|
|
|
|
for (auto& var_pair : current.second) {
|
|
|
|
VLOG(10) << "add origin_grad: " << target->Name();
|
|
|
|
VLOG(10) << "added grad: " << var_pair.second->Name()
|
|
|
|
<< " trace id is: " << var_pair.first;
|
|
|
|
AddTo(var_pair.second, target, current.first, grad_ref);
|
|
|
|
var_pair.second.reset();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class Autograd {
|
|
|
|
public:
|
|
|
|
Autograd() {}
|
|
|
|
|
|
|
|
void RunBackward(VarBase* var, const detail::BackwardStrategy& bck_stratedy) {
|
|
|
|
if (var->IsStopGradient()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
VLOG(2) << "start autograd";
|
|
|
|
BackwardSumMap bck_map;
|
|
|
|
std::deque<OpBase*> ready;
|
|
|
|
ready.push_back(var->PreOp());
|
|
|
|
|
|
|
|
std::map<OpBase*, int> dep_counts =
|
|
|
|
ComputeDepCounts(var->PreOp(), bck_stratedy, &grad_ref);
|
|
|
|
|
|
|
|
while (!ready.empty()) {
|
|
|
|
OpBase* ready_op = ready.front();
|
|
|
|
ready.pop_front();
|
|
|
|
std::vector<VarBasePtrMap> grads_outputs =
|
|
|
|
ready_op->ApplyGrad(&bck_map, &grad_ref, bck_stratedy);
|
|
|
|
|
|
|
|
for (const auto& map : grads_outputs) {
|
|
|
|
for (auto it = map.rbegin(); it != map.rend(); ++it) {
|
|
|
|
const std::vector<std::shared_ptr<VarBase>>& grad_outs = it->second;
|
|
|
|
for (size_t i = 0; i < grad_outs.size(); ++i) {
|
|
|
|
if (!grad_outs[i] || grad_outs[i]->IsStopGradient()) continue;
|
|
|
|
OpBase* pre_op = grad_outs[i]->PreOp();
|
|
|
|
if (!pre_op) continue;
|
|
|
|
dep_counts[pre_op] -= 1;
|
|
|
|
PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
|
|
|
|
bool pre_op_ready = dep_counts[pre_op] == 0;
|
|
|
|
if (pre_op_ready) {
|
|
|
|
ready.push_back(pre_op);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ready_op->InvokeBackwardHooks();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::map<OpBase*, int> ComputeDepCounts(
|
|
|
|
OpBase* op, const detail::BackwardStrategy& bck_stratedy,
|
|
|
|
GradientRef* grad_ref) {
|
|
|
|
if (bck_stratedy.sorted_sum_gradient_) {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(grad_ref,
|
|
|
|
"grad_ref should not be null when "
|
|
|
|
"using sorted grad backward strategy");
|
|
|
|
}
|
|
|
|
std::map<OpBase*, int> ret;
|
|
|
|
|
|
|
|
std::deque<OpBase*> queue;
|
|
|
|
queue.push_back(op);
|
|
|
|
std::unordered_set<OpBase*> visited;
|
|
|
|
visited.insert(op);
|
|
|
|
while (!queue.empty()) {
|
|
|
|
OpBase* candidate = queue.front();
|
|
|
|
queue.pop_front();
|
|
|
|
for (const auto& map : candidate->grad_output_vars_) {
|
|
|
|
for (const auto& it : map) {
|
|
|
|
for (const auto& vb : it.second) {
|
|
|
|
if (bck_stratedy.sorted_sum_gradient_) {
|
|
|
|
++(*grad_ref)[vb.get()].first;
|
|
|
|
}
|
|
|
|
// init the state of the grad_
|
|
|
|
(*grad_ref)[vb.get()].second = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto it : candidate->pre_ops_) {
|
|
|
|
for (OpBase* pre_op : it.second) {
|
|
|
|
if (!pre_op) continue;
|
|
|
|
VLOG(2) << "op dep " << candidate->Type() << " trace id "
|
|
|
|
<< candidate->trace_id_ << " <---- " << it.first << " <---- "
|
|
|
|
<< pre_op->Type() << " trace id " << pre_op->trace_id_;
|
|
|
|
if (visited.find(pre_op) == visited.end()) {
|
|
|
|
visited.insert(pre_op);
|
|
|
|
queue.push_back(pre_op);
|
|
|
|
}
|
|
|
|
ret[pre_op] += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
GradientRef grad_ref;
|
|
|
|
};
|
|
|
|
|
|
|
|
std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
|
|
|
|
const bool blocking) const {
|
|
|
|
PADDLE_ENFORCE(var_->IsInitialized(),
|
|
|
|
"Variable must be initialized when getting numpy tensor");
|
|
|
|
|
|
|
|
// TODO(minqiyang): change this after move unique_name generator to CXX
|
|
|
|
const framework::LoDTensor& self_tensor = var_->Get<framework::LoDTensor>();
|
|
|
|
std::unique_ptr<VarBase> new_var(new VarBase(
|
|
|
|
"Itmp", self_tensor.type(), self_tensor.dims(), dst_place, true, false));
|
|
|
|
framework::LoDTensor* tensor =
|
|
|
|
new_var->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
tensor->set_lod(var_->Get<framework::LoDTensor>().lod());
|
|
|
|
|
|
|
|
const auto& src_tensor = var_->Get<framework::LoDTensor>();
|
|
|
|
framework::TensorCopy(src_tensor, dst_place, tensor);
|
|
|
|
if (blocking) {
|
|
|
|
platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
|
|
|
|
auto src_place = src_tensor.place();
|
|
|
|
if (!(src_place == dst_place)) {
|
|
|
|
platform::DeviceContextPool::Instance().Get(src_place)->Wait();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (platform::is_gpu_place(dst_place)) {
|
|
|
|
VLOG(3) << "copy tensor " << Name() << " from gpu";
|
|
|
|
}
|
|
|
|
|
|
|
|
return new_var;
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::LoDTensor& VarBase::GradValue() {
|
|
|
|
VLOG(3) << "get var grad " << Name();
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(grads_,
|
|
|
|
"Could not get grad value from no grad variable");
|
|
|
|
return *(grads_->var_->GetMutable<framework::LoDTensor>());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<VarBasePtrMap> OpBase::ApplyGrad(
|
|
|
|
BackwardSumMap* bck_map, GradientRef* grad_ref,
|
|
|
|
const detail::BackwardStrategy& bck_stratedy) {
|
|
|
|
PADDLE_ENFORCE(!grad_op_descs_.empty(), "%s has no backward implementation",
|
|
|
|
Type());
|
|
|
|
VLOG(3) << "apply op grad: " << Type();
|
|
|
|
std::vector<VarBasePtrMap> tmp_grad_outputs;
|
|
|
|
const size_t grad_op_count = grad_op_descs_.size();
|
|
|
|
|
|
|
|
tmp_grad_outputs.resize(grad_op_count);
|
|
|
|
for (size_t k = 0; k < grad_op_count; ++k) {
|
|
|
|
framework::OpDesc* grad_op_desc = grad_op_descs_[k];
|
|
|
|
platform::RecordEvent record_event(grad_op_desc->Type());
|
|
|
|
auto& grad_output_variable_map = grad_output_vars_[k];
|
|
|
|
VLOG(3) << "apply grad op " << grad_op_desc->Type();
|
|
|
|
|
|
|
|
// Allocate tmp grad output variable
|
|
|
|
for (const auto& it : grad_output_variable_map) {
|
|
|
|
auto& outputs = tmp_grad_outputs[k][it.first];
|
|
|
|
outputs.reserve(it.second.size());
|
|
|
|
for (const std::shared_ptr<imperative::VarBase>& origin_grad_var_base :
|
|
|
|
it.second) {
|
|
|
|
// Allocate a new variable
|
|
|
|
std::shared_ptr<imperative::VarBase> tmp_grad_var_base(new VarBase(
|
|
|
|
string::Sprintf("%s@IGrad", origin_grad_var_base->Name()),
|
|
|
|
origin_grad_var_base->DataType(), origin_grad_var_base->Dims(),
|
|
|
|
place_, true, false));
|
|
|
|
outputs.emplace_back(std::move(tmp_grad_var_base));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// No need to do compile time infer shape here.
|
|
|
|
// grad_op_desc_->InferShape(*block_);
|
|
|
|
// grad_op_desc->InferVarType(block_);
|
|
|
|
|
|
|
|
std::unique_ptr<framework::OperatorBase> opbase =
|
|
|
|
framework::OpRegistry::CreateOp(*grad_op_desc);
|
|
|
|
|
|
|
|
auto& info = framework::OpInfoMap::Instance().Get(grad_op_desc->Type());
|
|
|
|
if (info.infer_var_type_) {
|
|
|
|
RuntimeInferVarTypeContext infer_var_type_ctx(
|
|
|
|
&grad_input_vars_[k], &tmp_grad_outputs[k], &(opbase->Attrs()));
|
|
|
|
info.infer_var_type_(&infer_var_type_ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::OperatorWithKernel* op_kernel =
|
|
|
|
dynamic_cast<framework::OperatorWithKernel*>(opbase.get());
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
|
|
|
|
|
|
|
|
// Run grad op
|
|
|
|
framework::VariableValueMap grad_invars_map;
|
|
|
|
framework::VariableValueMap grad_outvars_map;
|
|
|
|
|
|
|
|
for (const auto& it : grad_input_vars_[k]) {
|
|
|
|
auto& grad_invars = grad_invars_map[it.first];
|
|
|
|
grad_invars.reserve(it.second.size());
|
|
|
|
for (const std::shared_ptr<imperative::VarBase>& grad_inp : it.second) {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(grad_inp->var_, "op %s input %s nullptr",
|
|
|
|
grad_op_desc->Type(), grad_inp->Name());
|
|
|
|
if (!grad_inp->IsInitialize()) {
|
|
|
|
grad_inp->InitBuffer();
|
|
|
|
ZeroGrads(grad_inp, place_);
|
|
|
|
}
|
|
|
|
const std::shared_ptr<imperative::VarBase>& const_grad_inp = grad_inp;
|
|
|
|
grad_invars.emplace_back(const_grad_inp->var_.get());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (const auto& it : tmp_grad_outputs[k]) {
|
|
|
|
auto& grad_outvars = grad_outvars_map[it.first];
|
|
|
|
grad_outvars.reserve(it.second.size());
|
|
|
|
for (const std::shared_ptr<imperative::VarBase>& grad_out : it.second) {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(grad_out->var_, "op %s output %s nullptr",
|
|
|
|
grad_op_desc->Type(), grad_out->Name());
|
|
|
|
|
|
|
|
grad_outvars.emplace_back(grad_out->var_.get());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::RuntimeContext ctx(grad_invars_map, grad_outvars_map);
|
|
|
|
framework::Scope scope;
|
|
|
|
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_);
|
|
|
|
p.op.RuntimeInferShape(scope, place_, ctx);
|
|
|
|
p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx,
|
|
|
|
p.kernel_configs));
|
|
|
|
}
|
|
|
|
|
|
|
|
platform::RecordEvent record_event("merge_grads");
|
|
|
|
// Add tmp grad outputs to original grad vars
|
|
|
|
for (size_t k = 0; k < grad_output_vars_.size(); ++k) {
|
|
|
|
for (const auto& it : grad_output_vars_[k]) {
|
|
|
|
auto& outputs = tmp_grad_outputs[k][it.first];
|
|
|
|
const auto& origin_outputs = it.second;
|
|
|
|
PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
|
|
// track outputs used by sum
|
|
|
|
if (bck_stratedy.sorted_sum_gradient_) {
|
|
|
|
if (bck_map->find(origin_outputs[i].get()) != bck_map->end()) {
|
|
|
|
VLOG(10) << "add sub grad to " << origin_outputs[i]->Name();
|
|
|
|
bck_map->at(origin_outputs[i].get())
|
|
|
|
.second.emplace_back(
|
|
|
|
std::pair<int, std::shared_ptr<imperative::VarBase>>(
|
|
|
|
this->trace_id_, std::move(outputs[i])));
|
|
|
|
} else {
|
|
|
|
VLOG(10) << "insert new map for " << origin_outputs[i]->Name();
|
|
|
|
std::pair<platform::Place,
|
|
|
|
std::vector<
|
|
|
|
std::pair<int, std::shared_ptr<imperative::VarBase>>>>
|
|
|
|
tmp(place_,
|
|
|
|
{std::make_pair(this->trace_id_, std::move(outputs[i]))});
|
|
|
|
bck_map->insert(std::make_pair(origin_outputs[i].get(), tmp));
|
|
|
|
}
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
grad_ref->find(origin_outputs[i].get()) != grad_ref->end(),
|
|
|
|
"Can't find %s in grad_reference count map",
|
|
|
|
origin_outputs[i]->Name());
|
|
|
|
PADDLE_ENFORCE(grad_ref->at(origin_outputs[i].get()).first >= 1,
|
|
|
|
"Backward error when calculate grad reference");
|
|
|
|
if (grad_ref->at(origin_outputs[i].get()).first > 1) {
|
|
|
|
VLOG(10) << "remove ref for " << origin_outputs[i]->Name();
|
|
|
|
grad_ref->at(origin_outputs[i].get()).first--;
|
|
|
|
} else {
|
|
|
|
VLOG(10) << "Add grad for: " << origin_outputs[i]->Name();
|
|
|
|
AddGradBySort(bck_map, origin_outputs[i], grad_ref);
|
|
|
|
grad_ref->at(origin_outputs[i].get()).first--;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
VLOG(10) << "AddTo Called with orig_grad is: "
|
|
|
|
<< origin_outputs[i]->name_ << " Grad to be added is "
|
|
|
|
<< outputs[i]->name_;
|
|
|
|
AddTo(outputs[i], origin_outputs[i], place_, grad_ref);
|
|
|
|
outputs[i].reset();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return grad_output_vars_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void OpBase::InvokeBackwardHooks() {
|
|
|
|
VLOG(3) << "call backward hooks, hooks num: " << backward_hooks_.size();
|
|
|
|
|
|
|
|
// call backward hooks
|
|
|
|
for (py::object& callable : backward_hooks_) {
|
|
|
|
callable(this);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void OpBase::RegisterBackwardHooks(const py::object& callable) {
|
|
|
|
VLOG(3) << "Register backward hooks " << trace_id_;
|
|
|
|
|
|
|
|
// TODO(minqiyang): check the callable format
|
|
|
|
backward_hooks_.push_back(callable);
|
|
|
|
}
|
|
|
|
|
|
|
|
void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) {
|
|
|
|
if (!pre_op_) return;
|
|
|
|
platform::RecordEvent record_event("Imperative Backward");
|
|
|
|
VLOG(3) << "start backward";
|
|
|
|
grads_->InitBuffer();
|
|
|
|
auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
operators::math::set_constant(
|
|
|
|
*(platform::DeviceContextPool::Instance().Get(
|
|
|
|
var_->GetMutable<framework::LoDTensor>()->place())),
|
|
|
|
grads_t, 1.0);
|
|
|
|
|
|
|
|
Autograd().RunBackward(this, bck_stratedy);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace imperative
|
|
|
|
} // namespace paddle
|