You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/learning_rate_scheduler.py

652 lines
23 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import math
from .. import unique_name
__all__ = [
'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay',
'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay'
]
class LearningRateDecay(object):
"""
Base class of learning rate decay
Define the common interface of an LearningRateDecay.
User should not use this class directly,
but need to use one of it's implementation.
"""
def __init__(self, begin=0, step=1, dtype='float32'):
self.step_num = begin
self.step_size = step
self.dtype = dtype
def __call__(self):
lr = self.step()
if isinstance(lr, float):
lr = self.create_lr_var(lr)
self.step_num += self.step_size
return lr
def create_lr_var(self, lr):
"""
convert lr from float to variable
Args:
lr: learning rate
Returns:
learning rate variable
"""
from .. import layers
lr = layers.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[1],
value=float(lr),
dtype=self.dtype,
persistable=False)
return lr
def step(self):
raise NotImplementedError()
class PiecewiseDecay(LearningRateDecay):
"""
Piecewise decay scheduler.
The algorithm can be described as the code below.
.. code-block:: text
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
if global_step < 10000:
learning_rate = 1.0
elif 10000 <= global_step < 20000:
learning_rate = 0.5
else:
learning_rate = 0.1
Parameters:
boundaries(list): A list of steps numbers. The type of element in the list is python int.
values(list): A list of learning rate values that will be picked during
different step boundaries. The type of element in the list is python float.
begin(int): The begin step to initialize the global_step in the description above.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding( [10, 10] )
optimizer = fluid.optimizer.SGD(
learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
parameter_list = emb.parameters() )
"""
def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
super(PiecewiseDecay, self).__init__(begin, step, dtype)
self.boundaries = boundaries
self.values = values
self.vars = []
for value in values:
self.vars.append(value)
def step(self):
for i in range(len(self.boundaries)):
if self.step_num < self.boundaries[i]:
return self.vars[i]
return self.create_lr_var(self.vars[len(self.values) - 1])
class NaturalExpDecay(LearningRateDecay):
"""
Applies natural exponential decay to the initial learning rate.
The algorithm can be described as following.
.. math::
decayed\_learning\_rate = learning\_rate * e^{y}
If staircase is set to False, then:
.. math::
y = - decay\_rate * \\frac{global\_step}{decay\_steps}
If staircase is set to True, then:
.. math::
y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps})
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int): The decay step size. It determines the decay cycle.
decay_rate(int): The decay rate.
staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
base_lr = 0.1
with fluid.dygraph.guard():
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.dygraph.NaturalExpDecay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
"""
def __init__(self,
learning_rate,
decay_steps,
decay_rate,
staircase=False,
begin=0,
step=1,
dtype='float32'):
super(NaturalExpDecay, self).__init__(begin, step, dtype)
self.learning_rate = learning_rate
self.decay_steps = decay_steps
self.decay_rate = decay_rate
self.staircase = staircase
def step(self):
from .. import layers
div_res = self.create_lr_var(self.step_num / self.decay_steps)
if self.staircase:
div_res = layers.floor(div_res)
decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate *
div_res)
return decayed_lr
class ExponentialDecay(LearningRateDecay):
"""
Applies exponential decay to the learning rate.
The algorithm can be described as following.
.. math::
decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
If staircase is set to False, then:
.. math::
y = \\frac{global\_step}{decay\_steps}
If staircase is set to True, then:
.. math::
y = math.floor(\\frac{global\_step}{decay\_steps})
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int): The decay step size. It determines the decay cycle.
decay_rate(float): The decay rate.
staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
base_lr = 0.1
with fluid.dygraph.guard():
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.dygraph.ExponentialDecay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
"""
def __init__(self,
learning_rate,
decay_steps,
decay_rate,
staircase=False,
begin=0,
step=1,
dtype='float32'):
super(ExponentialDecay, self).__init__(begin, step, dtype)
self.learning_rate = learning_rate
self.decay_steps = decay_steps
self.decay_rate = decay_rate
self.staircase = staircase
def step(self):
from .. import layers
div_res = self.create_lr_var(self.step_num / self.decay_steps)
if self.staircase:
div_res = layers.floor(div_res)
decayed_lr = self.learning_rate * (self.decay_rate**div_res)
return decayed_lr
class InverseTimeDecay(LearningRateDecay):
"""
Applies inverse time decay to the initial learning rate.
The algorithm can be described as following.
If staircase is set to False, then:
.. math::
decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}
If staircase is set to True, then:
.. math::
decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int): The decay step size. It determines the decay cycle.
decay_rate(float): The decay rate.
staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
base_lr = 0.1
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.dygraph.InverseTimeDecay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True),
parameter_list = emb.parameters())
"""
def __init__(self,
learning_rate,
decay_steps,
decay_rate,
staircase=False,
begin=0,
step=1,
dtype='float32'):
super(InverseTimeDecay, self).__init__(begin, step, dtype)
self.learning_rate = learning_rate
self.decay_steps = decay_steps
self.decay_rate = decay_rate
self.staircase = staircase
def step(self):
from .. import layers
div_res = self.create_lr_var(self.step_num / self.decay_steps)
if self.staircase:
div_res = layers.floor(div_res)
decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)
return decayed_lr
class PolynomialDecay(LearningRateDecay):
"""
Applies polynomial decay to the initial learning rate.
The algorithm can be described as following.
If cycle is set to True, then:
.. math::
decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate
If cycle is set to False, then:
.. math::
global\_step & = min(global\_step, decay\_steps)
decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int32): The decay step size. It determines the decay cycle.
end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
power(float, optional): Power of polynomial. The default value is 1.0.
cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
start_lr = 0.01
total_step = 5000
end_lr = 0
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding( [10, 10])
optimizer = fluid.optimizer.SGD(
learning_rate = fluid.dygraph.PolynomialDecay(
start_lr, total_step, end_lr, power=1.0),
parameter_list = emb.parameters())
"""
def __init__(self,
learning_rate,
decay_steps,
end_learning_rate=0.0001,
power=1.0,
cycle=False,
begin=0,
step=1,
dtype='float32'):
super(PolynomialDecay, self).__init__(begin, step, dtype)
self.learning_rate = learning_rate
self.decay_steps = decay_steps
self.end_learning_rate = end_learning_rate
self.power = power
self.cycle = cycle
def step(self):
from .. import layers
tmp_step_num = self.step_num
tmp_decay_steps = self.decay_steps
if self.cycle:
div_res = layers.ceil(
self.create_lr_var(tmp_step_num / float(self.decay_steps)))
if tmp_step_num == 0:
div_res = self.create_lr_var(1.0)
tmp_decay_steps = self.decay_steps * div_res
else:
tmp_step_num = self.create_lr_var(tmp_step_num
if tmp_step_num < self.decay_steps
else self.decay_steps)
decayed_lr = (self.learning_rate - self.end_learning_rate) * \
((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate
return decayed_lr
class CosineDecay(LearningRateDecay):
"""
Applies cosine decay to the learning rate.
The algorithm can be described as following.
.. math::
decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
step_each_epoch(int): The number of steps in an epoch.
epochs(int): The number of epochs.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
base_lr = 0.1
with fluid.dygraph.guard():
optimizer = fluid.optimizer.SGD(
learning_rate = fluid.dygraph.CosineDecay(
base_lr, 10000, 120) )
"""
def __init__(self,
learning_rate,
step_each_epoch,
epochs,
begin=0,
step=1,
dtype='float32'):
super(CosineDecay, self).__init__(begin, step, dtype)
self.learning_rate = learning_rate
self.step_each_epoch = step_each_epoch
self.epochs = epochs
def step(self):
from .. import layers
cur_epoch = layers.floor(
self.create_lr_var(self.step_num / self.step_each_epoch))
decayed_lr = self.learning_rate * 0.5 * (
layers.cos(cur_epoch * math.pi / self.epochs) + 1)
return decayed_lr
class NoamDecay(LearningRateDecay):
"""
Applies Noam decay to the initial learning rate.
The algorithm can be described as following.
.. math::
decayed\_learning\_rate = d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
Parameters:
d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
warmup_steps = 100
learning_rate = 0.01
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
optimizer = fluid.optimizer.SGD(
learning_rate = fluid.dygraph.NoamDecay(
1/(warmup_steps *(learning_rate ** 2)),
warmup_steps),
parameter_list = emb.parameters())
"""
def __init__(self, d_model, warmup_steps, begin=1, step=1, dtype='float32'):
super(NoamDecay, self).__init__(begin, step, dtype)
self.d_model = d_model
self.warmup_steps = warmup_steps
def step(self):
from .. import layers
a = self.create_lr_var(self.step_num**-0.5)
b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
lr_value = (self.d_model**-0.5) * layers.elementwise_min(a, b)
return lr_value
class LinearLrWarmup(LearningRateDecay):
"""
This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
When global_step < warmup_steps, learning rate is updated as:
.. code-block:: text
linear_step = end_lr - start_lr
lr = start_lr + linear_step * (global_step / warmup_steps)
where start_lr is the initial learning rate, and end_lr is the final learning rate;
When global_step >= warmup_steps, learning rate is updated as:
.. code-block:: text
lr = learning_rate
where lr is the learning_rate after warm-up.
Args:
learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
warmup_steps (int): Steps for warm up.
start_lr (float): Initial learning rate of warm up.
end_lr (float): Final learning rate of warm up.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
Variable: Warm-up learning rate with the same data type as learning_rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
learning_rate = 0.1
warmup_steps = 50
start_lr = 1. / 3.
end_lr = 0.1
with fluid.dygraph.guard():
lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
"""
def __init__(self,
learning_rate,
warmup_steps,
start_lr,
end_lr,
begin=1,
step=1,
dtype='float32'):
super(LinearLrWarmup, self).__init__(begin, step, dtype)
type_check = isinstance(learning_rate, float) or isinstance(
learning_rate, int) or isinstance(learning_rate, LearningRateDecay)
if not type_check:
raise TypeError(
"the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".
format(learning_rate))
self.learning_rate = learning_rate
self.warmup_steps = warmup_steps
assert end_lr > start_lr, "end_lr {} must be greater than start_lr {}".format(
end_lr, start_lr)
self.lr_ratio_before_warmup = (
float(end_lr) - float(start_lr)) / float(warmup_steps)
def step(self):
base_lr = self.learning_rate
if isinstance(self.learning_rate, LearningRateDecay):
base_lr = base_lr()
from .. import layers
if self.step_num < self.warmup_steps:
return self.lr_ratio_before_warmup * self.step_num
else:
return base_lr